Newer
Older
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
From Coq Require Export EqdepFacts PArith NArith ZArith NPeano.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option sprop.
Global Instance comparison_eq_dec : EqDecision comparison.
(** * Notations and properties of [nat] *)
Global Arguments minus !_ !_ / : assert.
Global Arguments Nat.max : simpl nomatch.
Robbert Krebbers
committed
Typeclasses Opaque lt.
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y ≤ z ≤ z'"
(at level 70, y at next level, z at next level).
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.
Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
Infix "`max`" := Nat.max (at level 35) : nat_scope.
Infix "`min`" := Nat.min (at level 35) : nat_scope.
Global Instance nat_eq_dec: EqDecision nat := eq_nat_dec.
Global Instance nat_le_dec: RelDecision le := le_dec.
Global Instance nat_lt_dec: RelDecision lt := lt_dec.
Global Instance nat_inhabited: Inhabited nat := populate 0%nat.
Global Instance S_inj: Inj (=) (=) S.
Global Instance nat_le_po: PartialOrder (≤).
Proof. repeat split; repeat intro; auto with lia. Qed.
Global Instance nat_le_total: Total (≤).
Proof. repeat intro; lia. Qed.
Global Instance nat_le_pi: ∀ x y : nat, ProofIrrel (x ≤ y).
Robbert Krebbers
committed
Proof.
assert (∀ x y (p : x ≤ y) y' (q : x ≤ y'),
y = y' → eq_dep nat (le x) y p y' q) as aux.
{ fix FIX 3. intros x ? [|y p] ? [|y' q].
- clear FIX. intros; exfalso; auto with lia.
- clear FIX. intros; exfalso; auto with lia.
- injection 1. intros Hy. by case (FIX x y p y' q Hy). }
Robbert Krebbers
committed
intros x y p q.
by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Robbert Krebbers
committed
Qed.
Global Instance nat_lt_pi: ∀ x y : nat, ProofIrrel (x < y).
Proof. unfold lt. apply _. Qed.
Robbert Krebbers
committed
Lemma nat_le_sum (x y : nat) : x ≤ y ↔ ∃ z, y = x + z.
Proof. split; [exists (y - x); lia | intros [z ->]; lia]. Qed.
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
Robbert Krebbers
committed
x2 < n → y2 < n → x1 * n + x2 = y1 * n + y2 → x1 = y1 ∧ x2 = y2.
Proof.
intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
Robbert Krebbers
committed
revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
x1 < n → y1 < n → x1 + x2 * n = y1 + y2 * n → x1 = y1 ∧ x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
Robbert Krebbers
committed
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
Global Instance Nat_divide_dec : RelDecision Nat.divide.
Robbert Krebbers
committed
refine (λ x y, cast_if (decide (lcm x y = y))); by rewrite Nat.divide_lcm_iff.
Global Instance: PartialOrder divide.
Proof.
repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Global Hint Extern 0 (_ | _) => reflexivity : core.
Lemma Nat_divide_ne_0 x y : (x | y) → y ≠ 0 → x ≠ 0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.
Lemma Nat_iter_S {A} n (f: A → A) x : Nat.iter (S n) f x = f (Nat.iter n f x).
Proof. done. Qed.
Lemma Nat_iter_S_r {A} n (f: A → A) x : Nat.iter (S n) f x = Nat.iter n f (f x).
Proof. induction n; by f_equal/=. Qed.
Lemma Nat_iter_add {A} n1 n2 (f : A → A) x :
Nat.iter (n1 + n2) f x = Nat.iter n1 f (Nat.iter n2 f x).
Proof. induction n1; by f_equal/=. Qed.
Lemma Nat_iter_mul {A} n1 n2 (f : A → A) x :
Nat.iter (n1 * n2) f x = Nat.iter n1 (Nat.iter n2 f) x.
Proof.
intros. induction n1 as [|n1 IHn1]; [done|].
simpl. by rewrite Nat_iter_add, IHn1.
Qed.
P x → (∀ y, P y → P (f y)) → P (Nat.iter k f x).
Proof. induction k; simpl; auto. Qed.
(** * Notations and properties of [positive] *)
Typeclasses Opaque Pos.le.
Typeclasses Opaque Pos.lt.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.
Global Arguments Pos.of_nat : simpl never.
Global Arguments Pmult : simpl never.
Global Instance positive_eq_dec: EqDecision positive := Pos.eq_dec.
Global Instance positive_le_dec: RelDecision Pos.le.
Robbert Krebbers
committed
Proof. refine (λ x y, decide ((x ?= y) ≠ Gt)). Defined.
Global Instance positive_lt_dec: RelDecision Pos.lt.
Robbert Krebbers
committed
Proof. refine (λ x y, decide ((x ?= y) = Lt)). Defined.
Global Instance positive_le_total: Total Pos.le.
Proof. repeat intro; lia. Qed.
Global Instance positive_inhabited: Inhabited positive := populate 1.
Global Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
Global Instance maybe_xI : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
Global Instance xO_inj : Inj (=) (=) (~0).
Global Instance xI_inj : Inj (=) (=) (~1).
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => (Papp p1 p2)~0
| p2~1 => (Papp p1 p2)~1
end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++.)" := (Papp p) (only parsing) : positive_scope.
Notation "(.++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.
Fixpoint Preverse_go (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => Preverse_go (p1~0) p2
| p2~1 => Preverse_go (p1~1) p2
end.
Definition Preverse : positive → positive := Preverse_go 1.
Proof. intros p. by induction p; intros; f_equal/=. Qed.
Proof. done. Qed.
Proof. intros ?? p. by induction p; intros; f_equal/=. Qed.
Global Instance Papp_inj p : Inj (=) (=) (.++ p).
Proof. intros ???. induction p; simplify_eq; auto. Qed.
Lemma Preverse_go_app p1 p2 p3 :
Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
revert p3 p1 p2.
cut (∀ p1 p2 p3, Preverse_go (p2 ++ p3) p1 = p2 ++ Preverse_go p3 p1).
{ by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
- apply (IH _ (_~1)).
- apply (IH _ (_~0)).
Lemma Preverse_app p1 p2 : Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.
Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).
Lemma Preverse_involutive p :
Preverse (Preverse p) = p.
Proof.
induction p as [p IH|p IH|]; simpl.
- by rewrite Preverse_xI, Preverse_app, IH.
- by rewrite Preverse_xO, Preverse_app, IH.
- reflexivity.
Qed.
Global Instance Preverse_inj : Inj (=) (=) Preverse.
Proof.
intros p q eq.
rewrite <- (Preverse_involutive p).
rewrite <- (Preverse_involutive q).
by rewrite eq.
Qed.
Fixpoint Plength (p : positive) : nat :=
match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
Lemma Papp_length p1 p2 : Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
Proof. by induction p2; f_equal/=. Qed.
Lemma Plt_sum (x y : positive) : x < y ↔ ∃ z, y = x + z.
Proof.
split.
- exists (y - x)%positive. symmetry. apply Pplus_minus. lia.
- intros [z ->]. lia.
Qed.
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
(** Duplicate the bits of a positive, i.e. 1~0~1 -> 1~0~0~1~1 and
1~1~0~0 -> 1~1~1~0~0~0~0 *)
Fixpoint Pdup (p : positive) : positive :=
match p with
| 1 => 1
| p'~0 => (Pdup p')~0~0
| p'~1 => (Pdup p')~1~1
end.
Lemma Pdup_app p q :
Pdup (p ++ q) = Pdup p ++ Pdup q.
Proof.
revert p.
induction q as [p IH|p IH|]; intros q; simpl.
- by rewrite IH.
- by rewrite IH.
- reflexivity.
Qed.
Lemma Pdup_suffix_eq p q s1 s2 :
s1~1~0 ++ Pdup p = s2~1~0 ++ Pdup q → p = q.
Proof.
revert q.
induction p as [p IH|p IH|]; intros [q|q|] eq; simplify_eq/=.
- by rewrite (IH q).
- by rewrite (IH q).
- reflexivity.
Qed.
Global Instance Pdup_inj : Inj (=) (=) Pdup.
Proof.
intros p q eq.
apply (Pdup_suffix_eq _ _ 1 1).
by rewrite eq.
Qed.
Lemma Preverse_Pdup p :
Preverse (Pdup p) = Pdup (Preverse p).
Proof.
induction p as [p IH|p IH|]; simpl.
- rewrite 3!Preverse_xI.
rewrite (assoc_L (++)).
rewrite IH.
rewrite Pdup_app.
reflexivity.
- rewrite 3!Preverse_xO.
rewrite (assoc_L (++)).
rewrite IH.
rewrite Pdup_app.
reflexivity.
- reflexivity.
Qed.
(** * Notations and properties of [N] *)
Typeclasses Opaque N.le.
Typeclasses Opaque N.lt.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%N : N_scope.
Notation "(<)" := N.lt (only parsing) : N_scope.
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.
Infix "`max`" := N.max (at level 35) : N_scope.
Infix "`min`" := N.min (at level 35) : N_scope.
Global Arguments N.add : simpl never.
Global Instance Npos_inj : Inj (=) (=) Npos.
Global Instance N_eq_dec: EqDecision N := N.eq_dec.
Global Program Instance N_le_dec : RelDecision N.le := λ x y,
match N.compare x y with Gt => right _ | _ => left _ end.
Solve Obligations with naive_solver.
Global Program Instance N_lt_dec : RelDecision N.lt := λ x y,
match N.compare x y with Lt => left _ | _ => right _ end.
Solve Obligations with naive_solver.
Global Instance N_inhabited: Inhabited N := populate 1%N.
Global Instance N_lt_pi x y : ProofIrrel (x < y)%N.
Proof. unfold N.lt. apply _. Qed.
Global Instance N_le_po: PartialOrder (≤)%N.
repeat split; red; [apply N.le_refl | apply N.le_trans | apply N.le_antisymm].
Global Instance N_le_total: Total (≤)%N.
Proof. repeat intro; lia. Qed.
Global Hint Extern 0 (_ ≤ _)%N => reflexivity : core.
(** * Notations and properties of [Z] *)
Typeclasses Opaque Z.le.
Typeclasses Opaque Z.lt.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Z_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Z_scope.
Notation "(<)" := Z.lt (only parsing) : Z_scope.
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Infix "`max`" := Z.max (at level 35) : Z_scope.
Infix "`min`" := Z.min (at level 35) : Z_scope.
Global Instance Zpos_inj : Inj (=) (=) Zpos.
Proof. by injection 1. Qed.
Global Instance Zneg_inj : Inj (=) (=) Zneg.
Proof. by injection 1. Qed.
Global Instance Z_of_nat_inj : Inj (=) (=) Z.of_nat.
Proof. intros n1 n2. apply Nat2Z.inj. Qed.
Global Instance Z_eq_dec: EqDecision Z := Z.eq_dec.
Global Instance Z_le_dec: RelDecision Z.le := Z_le_dec.
Global Instance Z_lt_dec: RelDecision Z.lt := Z_lt_dec.
Global Instance Z_ge_dec: RelDecision Z.ge := Z_ge_dec.
Global Instance Z_gt_dec: RelDecision Z.gt := Z_gt_dec.
Global Instance Z_inhabited: Inhabited Z := populate 1.
Global Instance Z_lt_pi x y : ProofIrrel (x < y).
Proof. unfold Z.lt. apply _. Qed.
Global Instance Z_le_po : PartialOrder (≤).
repeat split; red; [apply Z.le_refl | apply Z.le_trans | apply Z.le_antisymm].
Global Instance Z_le_total: Total Z.le.
Proof. repeat intro; lia. Qed.
Lemma Z_pow_pred_r n m : 0 < m → n * n ^ (Z.pred m) = n ^ m.
Proof.
intros. rewrite <-Z.pow_succ_r, Z.succ_pred; [done|]. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0 ≤ x < k → 0 < y → 0 ≤ x `quot` y < k.
Proof.
intros [??] ?.
destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
split; [apply Z.quot_pos; lia|].
trans x; auto. apply Z.quot_lt; lia.
Global Arguments Z.pred : simpl never.
Global Arguments Z.succ : simpl never.
Global Arguments Z.of_nat : simpl never.
Global Arguments Z.to_nat : simpl never.
Global Arguments Z.mul : simpl never.
Global Arguments Z.add : simpl never.
Global Arguments Z.sub : simpl never.
Global Arguments Z.opp : simpl never.
Global Arguments Z.pow : simpl never.
Global Arguments Z.div : simpl never.
Global Arguments Z.modulo : simpl never.
Global Arguments Z.quot : simpl never.
Global Arguments Z.rem : simpl never.
Global Arguments Z.shiftl : simpl never.
Global Arguments Z.shiftr : simpl never.
Global Arguments Z.gcd : simpl never.
Global Arguments Z.lcm : simpl never.
Global Arguments Z.min : simpl never.
Global Arguments Z.max : simpl never.
Global Arguments Z.lor : simpl never.
Global Arguments Z.land : simpl never.
Global Arguments Z.lxor : simpl never.
Global Arguments Z.lnot : simpl never.
Global Arguments Z.square : simpl never.
Global Arguments Z.abs : simpl never.
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x ≠ 0%nat → 0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x ≠ 0%nat → 0 ≤ x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y → 0 ≤ x `mod` y.
Robbert Krebbers
committed
Proof. apply Z.mod_pos_bound. Qed.
Global Hint Resolve Z.lt_le_incl : zpos.
Global Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Global Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
Global Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Global Hint Resolve Z_mod_pos Z.div_pos : zpos.
Global Hint Extern 1000 => lia : zpos.
Robbert Krebbers
committed
Lemma Z_to_nat_nonpos x : x ≤ 0 → Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = (Z.of_nat x) ^ (Z.of_nat y).
induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
Nat2Z.inj_mul, IH by auto with zpos.
Lemma Nat2Z_divide n m : (Z.of_nat n | Z.of_nat m) ↔ (n | m)%nat.
Proof.
split.
- rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i).
destruct (decide (0 ≤ i)%Z).
{ by rewrite Z2Nat.inj_mul, Nat2Z.id by lia. }
by rewrite !Z_to_nat_nonpos by auto using Z.mul_nonpos_nonneg with lia.
- intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Qed.
Lemma Z2Nat_divide n m :
0 ≤ n → 0 ≤ m → (Z.to_nat n | Z.to_nat m)%nat ↔ (n | m).
Proof. intros. by rewrite <-Nat2Z_divide, !Z2Nat.id by done. Qed.
Lemma Nat2Z_inj_div x y : Z.of_nat (x `div` y) = (Z.of_nat x) `div` (Z.of_nat y).
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.div_unique with (Z.of_nat $ x `mod` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Nat2Z_inj_mod x y : Z.of_nat (x `mod` y) = (Z.of_nat x) `mod` (Z.of_nat y).
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.mod_unique with (Z.of_nat $ x `div` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
0 ≤ x → 0 ≤ y →
Z.to_nat (x `div` y) = (Z.to_nat x `div` Z.to_nat y)%nat.
Proof.
intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
pose proof (Z.div_pos x y).
apply (inj Z.of_nat). by rewrite Nat2Z_inj_div, !Z2Nat.id by lia.
Qed.
0 ≤ x → 0 ≤ y →
Z.to_nat (x `mod` y) = (Z.to_nat x `mod` Z.to_nat y)%nat.
Proof.
intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
pose proof (Z_mod_pos x y).
apply (inj Z.of_nat). by rewrite Nat2Z_inj_mod, !Z2Nat.id by lia.
Qed.
Lemma Z_succ_pred_induction y (P : Z → Prop) :
P y →
(∀ x, y ≤ x → P x → P (Z.succ x)) →
(∀ x, x ≤ y → P x → P (Z.pred x)) →
(∀ x, P x).
Proof. intros H0 HS HP. by apply (Z.order_induction' _ _ y). Qed.
Lemma Zmod_in_range q a c :
q * c ≤ a < (q + 1) * c →
a `mod` c = a - q * c.
Proof. intros ?. symmetry. apply Z.mod_unique_pos with q; lia. Qed.
Lemma Z_ones_spec n m:
0 ≤ m → 0 ≤ n →
Z.testbit (Z.ones n) m = bool_decide (m < n).
Proof.
intros. case_bool_decide.
- by rewrite Z.ones_spec_low by lia.
- by rewrite Z.ones_spec_high by lia.
Qed.
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
Lemma Z_bounded_iff_bits_nonneg k n :
0 ≤ k → 0 ≤ n →
n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = false.
Proof.
intros. destruct (decide (n = 0)) as [->|].
{ naive_solver eauto using Z.bits_0, Z.pow_pos_nonneg with lia. }
split.
{ intros Hb%Z.log2_lt_pow2 l Hl; [|lia]. apply Z.bits_above_log2; lia. }
intros Hl. apply Z.nle_gt; intros ?.
assert (Z.testbit n (Z.log2 n) = false) as Hbit.
{ apply Hl, Z.log2_le_pow2; lia. }
by rewrite Z.bit_log2 in Hbit by lia.
Qed.
(* Goals of the form [0 ≤ n ≤ 2^k] appear often. So we also define the
derived version [Z_bounded_iff_bits_nonneg'] that does not require
proving [0 ≤ n] twice in that case. *)
Lemma Z_bounded_iff_bits_nonneg' k n :
0 ≤ k → 0 ≤ n →
0 ≤ n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = false.
Proof. intros ??. rewrite <-Z_bounded_iff_bits_nonneg; lia. Qed.
Lemma Z_bounded_iff_bits k n :
0 ≤ k →
-2^k ≤ n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = bool_decide (n < 0).
Proof.
intros Hk.
case_bool_decide; [ | rewrite <-Z_bounded_iff_bits_nonneg; lia].
assert(n = - Z.abs n)%Z as -> by lia.
split.
{ intros [? _] l Hl.
rewrite Z.bits_opp, negb_true_iff by lia.
apply Z_bounded_iff_bits_nonneg with k; lia. }
intros Hbit. split.
- rewrite <-Z.opp_le_mono, <-Z.lt_pred_le.
apply Z_bounded_iff_bits_nonneg; [lia..|]. intros l Hl.
rewrite <-negb_true_iff, <-Z.bits_opp by lia.
by apply Hbit.
- etrans; [|apply Z.pow_pos_nonneg]; lia.
Qed.
Global Instance N_of_nat_inj: Inj (=) (=) N.of_nat := Nat2N.inj.
Global Instance nat_of_N_inj: Inj (=) (=) N.to_nat := N2Nat.inj.
Global Instance nat_of_pos_inj: Inj (=) (=) Pos.to_nat := Pos2Nat.inj.
Global Instance pos_of_Snat_inj: Inj (=) (=) Pos.of_succ_nat := SuccNat2Pos.inj.
Global Instance Z_of_N_inj: Inj (=) (=) Z.of_N := N2Z.inj.
(** * Notations and properties of [Qc] *)
Typeclasses Opaque Qcle.
Typeclasses Opaque Qclt.
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
Notation "2" := (1+1) : Qc_scope.
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Qc_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.
Global Hint Extern 1 (_ ≤ _) => reflexivity || discriminate : core.
Global Arguments Qred : simpl never.
Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Definition Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Global Instance Qc_eq_dec: EqDecision Qc := Qc_eq_dec.
Global Program Instance Qc_le_dec: RelDecision Qcle := λ x y,
if Qclt_le_dec y x then right _ else left _.
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
Global Program Instance Qc_lt_dec: RelDecision Qclt := λ x y,
if Qclt_le_dec x y then left _ else right _.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
Global Instance Qc_lt_pi x y : ProofIrrel (x < y).
Proof. unfold Qclt. apply _. Qed.
Global Instance Qc_le_po: PartialOrder (≤).
repeat split; red; [apply Qcle_refl | apply Qcle_trans | apply Qcle_antisym].
Global Instance Qc_lt_strict: StrictOrder (<).
split; red; [|apply Qclt_trans].
intros x Hx. by destruct (Qclt_not_eq x x).
Global Instance Qc_le_total: Total Qcle.
Proof. intros x y. destruct (Qclt_le_dec x y); auto using Qclt_le_weak. Qed.
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
Lemma Qcplus_diag x : (x + x)%Qc = (2 * x)%Qc.
Proof. ring. Qed.
Lemma Qcle_ngt (x y : Qc) : x ≤ y ↔ ¬y < x.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : x < y ↔ ¬y ≤ x.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
Lemma Qcplus_le_mono_l (x y z : Qc) : x ≤ y ↔ z + x ≤ z + y.
Proof.
split; intros.
- by apply Qcplus_le_compat.
- replace x with ((0 - z) + (z + x)) by ring.
replace y with ((0 - z) + (z + y)) by ring.
by apply Qcplus_le_compat.
Qed.
Lemma Qcplus_le_mono_r (x y z : Qc) : x ≤ y ↔ x + z ≤ y + z.
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y ↔ z + x < z + y.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y ↔ x + z < y + z.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
Global Instance Qcopp_inj : Inj (=) (=) Qcopp.
Proof.
intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Global Instance Qcplus_inj_r z : Inj (=) (=) (Qcplus z).
intros x y H. by apply (anti_symm (≤));rewrite (Qcplus_le_mono_l _ _ z), H.
Global Instance Qcplus_inj_l z : Inj (=) (=) (λ x, x + z).
intros x y H. by apply (anti_symm (≤)); rewrite (Qcplus_le_mono_r _ _ z), H.
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x → 0 ≤ y → 0 < x + y.
Proof.
intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0 ≤ x → 0 < y → 0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed.
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x → 0 < y → 0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0 ≤ x → 0 ≤ y → 0 ≤ x + y.
Proof.
intros. trans (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0 → y ≤ 0 → x + y < 0.
Proof.
intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x ≤ 0 → y < 0 → x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0 → y < 0 → x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x ≤ 0 → y ≤ 0 → x + y ≤ 0.
Proof.
intros. trans (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcmult_le_mono_nonneg_l x y z : 0 ≤ z → x ≤ y → z * x ≤ z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0 ≤ z → x ≤ y → x * z ≤ y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z → x ≤ y ↔ z * x ≤ z * y.
Proof.
split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
rewrite !Qcle_ngt, !(Qcmult_comm z).
intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z → x ≤ y ↔ x * z ≤ y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z → x < y ↔ z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z → x < y ↔ x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x → 0 < y → 0 < x * y.
Proof.
intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0 ≤ x → 0 ≤ y → 0 ≤ x * y.
Proof.
intros. trans (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_le_mono_nonneg_r.
Qed.
Robbert Krebbers
committed
Lemma Qcinv_pos x : 0 < x → 0 < /x.
Proof.
intros. assert (0 ≠ x) by (by apply Qclt_not_eq).
by rewrite (Qcmult_lt_mono_pos_r _ _ x), Qcmult_0_l, Qcmult_inv_l by done.
Qed.
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_1 : Qc_of_Z 1 = 1.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_2 : Qc_of_Z 2 = 2.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m → n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m ↔ n = m.
Proof. split; [ auto using Z2Qc_inj | by intros -> ]. Qed.
Lemma Z2Qc_inj_le n m : (n ≤ m)%Z ↔ Qc_of_Z n ≤ Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z ↔ Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
apply Qc_is_canon; simpl.
by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
(** We define the type [Qp] of positive rationals as fractions of positives with
an [SProp]-based proof that ensures the fraction is in canonical form (i.e., its
gcd is 1). Note that we do not define [Qp] as a subset (i.e., Sigma) of the
standard library's [Qc]. The type [Qc] uses a [Prop]-based proof for canonicity
of the fraction. *)
Definition Qp_red (q : positive * positive) : positive * positive :=
(Pos.ggcd (q.1) (q.2)).2.
Definition Qp_wf (q : positive * positive) : SProp :=
Lemma Qp_red_wf q : Qp_wf (Qp_red q).
Proof.
apply squash. unfold Qp_red. destruct q as [n d]; simpl.
pose proof (Pos.ggcd_greatest n d) as Hgreatest.
destruct (Pos.ggcd n d) as [q [r1 r2]] eqn:?; simpl in *.
pose proof (Pos.ggcd_correct_divisors r1 r2) as Hdiv.
destruct (Pos.ggcd r1 r2) as [q' [r1' r2']] eqn:?; simpl in *.
destruct Hdiv as [-> ->].
rewrite (Hgreatest q') by (by apply Pos.divide_mul_l, Z.divide_Zpos).
by rewrite !Pos.mul_1_l.
Qed.
Record Qp := QP' {
Qp_car : positive * positive;
Qp_prf : Qp_wf Qp_car;
}.
Definition QP (n d : positive) : Qp :=
QP' (Qp_red (n,d)) (Qp_red_wf _).
Add Printing Constructor Qp.
Declare Scope Qp_scope.
Delimit Scope Qp_scope with Qp.
Robbert Krebbers
committed
Definition Qp_add (p q : Qp) : Qp :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
QP (pn * qd + qn * pd) (pd * qd).
Global Arguments Qp_add : simpl never.
Robbert Krebbers
committed
Definition Qp_sub (p q : Qp) : option Qp :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
guard (qn * pd < pn * qd)%positive;
Some (QP (pn * qd - qn * pd) (pd * qd)).
Global Arguments Qp_sub : simpl never.
Robbert Krebbers
committed
Definition Qp_mul (p q : Qp) : Qp :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
QP (pn * qn) (pd * qd).
Global Arguments Qp_mul : simpl never.
Robbert Krebbers
committed
Definition Qp_inv (q : Qp) : Qp :=
Global Arguments Qp_inv : simpl never.
Robbert Krebbers
committed
Robbert Krebbers
committed
Definition Qp_div (p q : Qp) : Qp := Qp_mul p (Qp_inv q).
Robbert Krebbers
committed
Typeclasses Opaque Qp_div.
Global Arguments Qp_div : simpl never.
Definition pos_to_Qp (n : positive) : Qp := QP n 1.
Global Arguments pos_to_Qp : simpl never.
Definition Qp_to_Q (q : Qp) : Q :=
let '(QP' (pn,pd) _) := q in
Qmake (Z.pos pn) pd.
Lemma Qred_Qp_to_Q q : Qred (Qp_to_Q q) = Qp_to_Q q.
Proof.
destruct q as [[qn qd] Hq]; unfold Qred; simpl.
apply (unsquash _) in Hq; unfold Qp_red in Hq; simpl in *.
destruct (Pos.ggcd qn qd) as [? [??]]; by simplify_eq/=.
Qed.
Definition Qp_to_Qc (q : Qp) : Qc := Qcmake (Qp_to_Q q) (Qred_Qp_to_Q q).
Definition Qc_to_Qp (q : Qc) : option Qp :=
match q return _ with
| Qcmake (Qmake (Z.pos n) d) _ => Some (QP n d)
| _ => None
end.
Definition Qp_le (p q : Qp) : Prop :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
(pn * qd ≤ qn * pd)%positive.
Definition Qp_lt (p q : Qp) : Prop :=
let '(QP' (pn,pd) _) := p in let '(QP' (qn,qd) _) := q in
(pn * qd < qn * pd)%positive.
(** ** Notations *)
Robbert Krebbers
committed
Infix "+" := Qp_add : Qp_scope.
Infix "-" := Qp_sub : Qp_scope.
Infix "*" := Qp_mul : Qp_scope.
Robbert Krebbers
committed
Notation "/ q" := (Qp_inv q) : Qp_scope.
Robbert Krebbers
committed
Notation "1" := (pos_to_Qp 1) : Qp_scope.
Notation "2" := (pos_to_Qp 2) : Qp_scope.
Notation "3" := (pos_to_Qp 3) : Qp_scope.
Notation "4" := (pos_to_Qp 4) : Qp_scope.
Infix "≤" := Qp_le : Qp_scope.
Infix "<" := Qp_lt : Qp_scope.
Notation "p ≤ q ≤ r" := (p ≤ q ∧ q ≤ r) : Qp_scope.
Notation "p ≤ q < r" := (p ≤ q ∧ q < r) : Qp_scope.
Notation "p < q < r" := (p < q ∧ q < r) : Qp_scope.
Notation "p < q ≤ r" := (p < q ∧ q ≤ r) : Qp_scope.
Notation "p ≤ q ≤ r ≤ r'" := (p ≤ q ∧ q ≤ r ∧ r ≤ r') : Qp_scope.
Notation "(≤)" := Qp_le (only parsing) : Qp_scope.
Notation "(<)" := Qp_lt (only parsing) : Qp_scope.
Global Hint Extern 0 (_ ≤ _)%Qp => reflexivity : core.
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
(** ** Properties about the conversion to [Qc] *)
(** After having proved these, we never break the [Qp] abstraction and derive
all [Qp] properties from the corresponding properties for [Qc]. *)
Lemma Qp_to_Qc_pos p : (0 < Qp_to_Qc p)%Qc.
Proof. destruct p as [[pn pd] Hp]. unfold Qclt, Qlt; simpl; lia. Qed.
Lemma Qp_to_Qc_inj_add p q : Qp_to_Qc (p + q) = (Qp_to_Qc p + Qp_to_Qc q)%Qc.
Proof.
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl. unfold Qp_add.
apply Qc_is_canon; simpl. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_sub p q :
Qp_to_Qc <$> (p - q) =
guard (Qp_to_Qc q < Qp_to_Qc p)%Qc; Some (Qp_to_Qc p - Qp_to_Qc q)%Qc.
Proof.
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl. unfold Qp_sub.
case_option_guard as Hpq; [|by rewrite option_guard_False].
rewrite option_guard_True by done; f_equal/=.
apply Qc_is_canon; simpl. rewrite (Qred_correct (- _)).
unfold Qeq, Qp_red, Qred; simpl.
replace (Z.pos pn * Z.pos qd + - Z.pos qn * Z.pos pd)%Z
with (Z.pos (pn * qd - qn * pd)) by lia; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_mul p q : Qp_to_Qc (p * q) = (Qp_to_Qc p * Qp_to_Qc q)%Qc.
Proof.
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl.
apply Qc_is_canon; simpl. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_inv p : Qp_to_Qc (/ p) = (/ Qp_to_Qc p)%Qc.
Proof.
destruct p as [[pn pd] Hp].
apply Qc_is_canon; simpl. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
Qed.
Lemma Qp_to_Qc_inj_div p q : Qp_to_Qc (p / q) = (Qp_to_Qc p / Qp_to_Qc q)%Qc.
Proof. unfold Qp_div. by rewrite Qp_to_Qc_inj_mul, Qp_to_Qc_inj_inv. Qed.
Lemma Qp_to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q ↔ p = q.
Proof.
split; [|by intros ->].
destruct p as [[pn pd] Hp], q as [[qn qd] Hq]; simpl. by intros [= -> ->].
Qed.
Robbert Krebbers
committed
Lemma Qp_to_Qc_inj_le p q : p ≤ q ↔ (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc.
Proof. by destruct p as [[pn pd] ?], q as [[qn qd] ?]. Qed.
Robbert Krebbers
committed
Lemma Qp_to_Qc_inj_lt p q : p < q ↔ (Qp_to_Qc p < Qp_to_Qc q)%Qc.
Proof. by destruct p as [[pn pd] ?], q as [[qn qd] ?]. Qed.
Lemma Qp_to_Qc_pos_to_Qp n : Qp_to_Qc (pos_to_Qp n) = Qc_of_Z (Z.pos n).
Proof.
apply Qc_is_canon. unfold Qeq. simpl. unfold Qp_red; simpl.
pose proof (Pos.ggcd_correct_divisors n 1) as Hdiv.
destruct (Pos.ggcd _ _) as [p [r1 r2]]; simpl in *.
destruct Hdiv as [-> ?].
rewrite (Pos.mul_eq_1_l p r2), (Pos.mul_eq_1_r p r2) by done. lia.
Qed.
Lemma Qc_to_Qp_Some p q : Qc_to_Qp p = Some q ↔ p = Qp_to_Qc q.
Proof.
split.
- intros Hpq. destruct p as [[[|pn|] pd] Hp]; simplify_eq/=.
apply Qc_is_canon; simpl. rewrite <-Hp. unfold Qeq, Qp_red, Qred; simpl.
by destruct (Pos.ggcd _ _) as [? [??]].
- intros ->. destruct q as [[qn qd] Hq]; simpl.
f_equal. unfold QP.
generalize (unsquash _ Hq). generalize (Qp_red_wf (qn, qd)).
generalize (Qp_red (qn, qd)). by intros ?? ->.
Qed.
Robbert Krebbers
committed
(** ** Basic type class instances *)
Global Instance Qp_eq_dec : EqDecision Qp.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q)));
by rewrite <-Qp_to_Qc_inj_iff.
Defined.
Global Instance Qp_le_dec : RelDecision (≤).
Robbert Krebbers
committed
refine (λ p q, cast_if (decide (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc));
by rewrite Qp_to_Qc_inj_le.
Global Instance Qp_lt_dec : RelDecision (<).
Robbert Krebbers
committed
refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc));
by rewrite Qp_to_Qc_inj_lt.
Global Instance Qp_lt_pi p q : ProofIrrel (p < q).
Proof.
destruct p as [[pn pd] ?], q as [[qn qd] ?]. unfold Qp_lt, Pos.lt. apply _.
Qed.
Global Instance Qp_inhabited : Inhabited Qp := populate 1.
Robbert Krebbers
committed
Robbert Krebbers
committed
Definition Qp_max (q p : Qp) : Qp := if decide (q ≤ p) then p else q.
Definition Qp_min (q p : Qp) : Qp := if decide (q ≤ p) then q else p.
Infix "`max`" := Qp_max : Qp_scope.
Infix "`min`" := Qp_min : Qp_scope.
Global Instance Qp_add_assoc : Assoc (=) Qp_add.
Proof.
intros p q r. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_add, Qcplus_assoc.
Qed.
Global Instance Qp_add_comm : Comm (=) Qp_add.
Proof.
intros p q. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_add, Qcplus_comm.
Qed.
Global Instance Qp_add_inj_r p : Inj (=) (=) (Qp_add p).
intros q1 q2. rewrite <-!Qp_to_Qc_inj_iff, !Qp_to_Qc_inj_add.
apply (inj (Qcplus (Qp_to_Qc p))).
Global Instance Qp_add_inj_l p : Inj (=) (=) (λ q, q + p).
intros q1 q2. rewrite <-!Qp_to_Qc_inj_iff, !Qp_to_Qc_inj_add.
apply (inj (λ q, q + Qp_to_Qc p)%Qc).
Global Instance Qp_mul_assoc : Assoc (=) Qp_mul.
Proof.
intros p q r. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_mul, Qcmult_assoc.
Qed.
Global Instance Qp_mul_comm : Comm (=) Qp_mul.
Proof.
intros p q. apply Qp_to_Qc_inj_iff.
by rewrite !Qp_to_Qc_inj_mul, Qcmult_comm.
Qed.
Global Instance Qp_mul_inj_r p : Inj (=) (=) (Qp_mul p).
Robbert Krebbers
committed
Proof.
intros q1 q2. rewrite <-!Qp_to_Qc_inj_iff, !Qp_to_Qc_inj_mul.
Robbert Krebbers
committed
intros Hpq.
apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ (Qp_to_Qc p));
first [apply Qp_to_Qc_pos|by rewrite Hpq].
Robbert Krebbers
committed
Qed.
Global Instance Qp_mul_inj_l p : Inj (=) (=) (λ q, q * p).
Robbert Krebbers
committed
Proof.
Robbert Krebbers
committed
intros q1 q2 Hpq. apply (inj (Qp_mul p)). by rewrite !(comm_L Qp_mul p).
Robbert Krebbers
committed
Qed.
Lemma Qp_mul_add_distr_l p q r : p * (q + r) = p * q + p * r.
Proof.
by rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add,
!Qp_to_Qc_inj_mul, Qp_to_Qc_inj_add, Qcmult_plus_distr_r.
Qed.
Lemma Qp_mul_add_distr_r p q r : (p + q) * r = p * r + q * r.
Proof.
by rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_add,
!Qp_to_Qc_inj_mul, Qp_to_Qc_inj_add, Qcmult_plus_distr_l.
Qed.
Robbert Krebbers
committed
Lemma Qp_mul_1_l p : 1 * p = p.
Proof. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_mul. apply Qcmult_1_l. Qed.
Robbert Krebbers
committed
Lemma Qp_mul_1_r p : p * 1 = p.
Proof. rewrite <-Qp_to_Qc_inj_iff, Qp_to_Qc_inj_mul. apply Qcmult_1_r. Qed.
Lemma Qp_add_diag p : p + p = 2 * p.
Proof. by rewrite <-Qp_1_1, Qp_mul_add_distr_r, !Qp_mul_1_l. Qed.
Robbert Krebbers
committed
Lemma Qp_mul_inv_l p : /p * p = 1.