Newer
Older
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
Robbert Krebbers
committed
(* This file is distributed under the terms of the BSD license. *)
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
Require Export Eqdep PArith NArith ZArith NPeano.
Require Import QArith Qcanon.
Require Export base decidable.
Open Scope nat_scope.
Coercion Z.of_nat : nat >-> Z.
(** * Notations and properties of [nat] *)
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y ≤ z ≤ z'"
(at level 70, y at next level, z at next level).
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y ∧ y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.
Infix "`div`" := NPeano.div (at level 35) : nat_scope.
Infix "`mod`" := NPeano.modulo (at level 35) : nat_scope.
Instance nat_eq_dec: ∀ x y : nat, Decision (x = y) := eq_nat_dec.
Instance nat_le_dec: ∀ x y : nat, Decision (x ≤ y) := le_dec.
Instance nat_lt_dec: ∀ x y : nat, Decision (x < y) := lt_dec.
Instance nat_inhabited: Inhabited nat := populate 0%nat.
Instance: Injective (=) (=) S.
Proof. by injection 1. Qed.
Instance: PartialOrder (≤).
Proof. repeat split; repeat intro; auto with lia. Qed.
Robbert Krebbers
committed
Instance nat_le_pi: ∀ x y : nat, ProofIrrel (x ≤ y).
Proof.
assert (∀ x y (p : x ≤ y) y' (q : x ≤ y'),
y = y' → eq_dep nat (le x) y p y' q) as aux.
{ fix 3. intros x ? [|y p] ? [|y' q].
* done.
* clear nat_le_pi. intros; exfalso; auto with lia.
* clear nat_le_pi. intros; exfalso; auto with lia.
Robbert Krebbers
committed
* injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
intros x y p q.
by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi: ∀ x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.
Definition sum_list_with {A} (f : A → nat) : list A → nat :=
fix go l :=
match l with
| [] => 0
| x :: l => f x + go l
end.
Notation sum_list := (sum_list_with id).
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
Robbert Krebbers
committed
x2 < n → y2 < n → x1 * n + x2 = y1 * n + y2 → x1 = y1 ∧ x2 = y2.
Proof.
intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
Robbert Krebbers
committed
revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
x1 < n → y1 < n → x1 + x2 * n = y1 + y2 * n → x1 = y1 ∧ x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
Robbert Krebbers
committed
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
Instance divide_dec x y : Decision (x | y).
Proof.
refine (cast_if (decide (lcm x y = y))); by rewrite Nat.divide_lcm_iff.
Defined.
Instance: PartialOrder divide.
Proof.
repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Hint Extern 0 (_ | _) => reflexivity.
Lemma Nat_divide_ne_0 x y : (x | y) → y ≠ 0 → x ≠ 0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.
(** * Notations and properties of [positive] *)
Open Scope positive_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : positive_scope.
Notation "x < y < z" := (x < y ∧ y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.
Arguments Pos.of_nat _ : simpl never.
Instance positive_eq_dec: ∀ x y : positive, Decision (x = y) := Pos.eq_dec.
Instance positive_inhabited: Inhabited positive := populate 1.
Instance: Injective (=) (=) (~0).
Instance: Injective (=) (=) (~1).
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => (Papp p1 p2)~0
| p2~1 => (Papp p1 p2)~1
end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.
Fixpoint Preverse_go (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => Preverse_go (p1~0) p2
| p2~1 => Preverse_go (p1~1) p2
end.
Definition Preverse : positive → positive := Preverse_go 1.
Global Instance: LeftId (=) 1 (++).
Proof. intros p. by induction p; intros; f_equal'. Qed.
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
Global Instance: Associative (=) (++).
Proof. intros ?? p. by induction p; intros; f_equal'. Qed.
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Global Instance: ∀ p : positive, Injective (=) (=) (++ p).
Proof. intros p ???. induction p; simplify_equality; auto. Qed.
Lemma Preverse_go_app_cont p1 p2 p3 :
Preverse_go (p2 ++ p1) p3 = p2 ++ Preverse_go p1 p3.
Proof.
revert p1. induction p3; simpl; intros.
* apply (IHp3 (_~1)).
* apply (IHp3 (_~0)).
* done.
Qed.
Lemma Preverse_go_app p1 p2 p3 :
Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
revert p1. induction p3; intros p1; simpl; auto.
by rewrite <-Preverse_go_app_cont.
Qed.
Lemma Preverse_app p1 p2 :
Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.
Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).
Fixpoint Plength (p : positive) : nat :=
match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
Lemma Papp_length p1 p2 :
Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
Proof. by induction p2; f_equal'. Qed.
Close Scope positive_scope.
(** * Notations and properties of [N] *)
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%N : N_scope.
Notation "x < y < z" := (x < y ∧ y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%N : N_scope.
Notation "(<)" := N.lt (only parsing) : N_scope.
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.
Arguments N.add _ _ : simpl never.
Instance: Injective (=) (=) Npos.
Proof. by injection 1. Qed.
Instance N_eq_dec: ∀ x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x ≤ y)%N :=
match Ncompare x y with
| Gt => right _
| _ => left _
end.
Next Obligation. congruence. Qed.
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
match Ncompare x y with
| Lt => left _
| _ => right _
end.
Next Obligation. congruence. Qed.
Instance N_inhabited: Inhabited N := populate 1%N.
Instance: PartialOrder (≤)%N.
Proof.
repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_ ≤ _)%N => reflexivity.
(** * Notations and properties of [Z] *)
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Z_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Z_scope.
Notation "(<)" := Z.lt (only parsing) : Z_scope.
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Instance: Injective (=) (=) Zpos.
Proof. by injection 1. Qed.
Instance: Injective (=) (=) Zneg.
Proof. by injection 1. Qed.
Instance Z_eq_dec: ∀ x y : Z, Decision (x = y) := Z.eq_dec.
Instance Z_le_dec: ∀ x y : Z, Decision (x ≤ y) := Z_le_dec.
Instance Z_lt_dec: ∀ x y : Z, Decision (x < y) := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
Instance: PartialOrder (≤).
Proof.
repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.
Lemma Z_pow_pred_r n m : 0 < m → n * n ^ (Z.pred m) = n ^ m.
Proof.
intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0 ≤ x < k → 0 < y → 0 ≤ x `quot` y < k.
Proof.
intros [??] ?.
destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
split. apply Z.quot_pos; lia. transitivity x; auto. apply Z.quot_lt; lia.
Qed.
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x ≠ 0%nat → 0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x ≠ 0%nat → 0 ≤ x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y → 0 ≤ x `mod` y.
Robbert Krebbers
committed
Proof. apply Z.mod_pos_bound. Qed.
Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
Robbert Krebbers
committed
Hint Extern 1000 => lia : zpos.
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
induction y as [|y IH].
* by rewrite Z.pow_0_r, Nat.pow_0_r.
* by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
Nat2Z.inj_mul, IH by auto with zpos.
Qed.
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.div_unique with (x `mod` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.mod_unique with (x `div` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.
(** * Notations and properties of [Qc] *)
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
Notation "2" := (1+1) : Qc_scope.
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Notation "x - y" := (x + -y) : Qc_scope.
Notation "x / y" := (x * /y) : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Qc_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.
Hint Extern 1 (_ ≤ _) => reflexivity || discriminate.
Arguments Qred _ : simpl never.
Instance Qc_eq_dec: ∀ x y : Qc, Decision (x = y) := Qc_eq_dec.
Program Instance Qc_le_dec (x y : Qc) : Decision (x ≤ y) :=
if Qclt_le_dec y x then right _ else left _.
Next Obligation. by apply Qclt_not_le. Qed.
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y) :=
if Qclt_le_dec x y then left _ else right _.
Next Obligation. by apply Qcle_not_lt. Qed.
Instance: PartialOrder (≤).
Proof.
repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
Lemma Qcle_ngt (x y : Qc) : x ≤ y ↔ ¬y < x.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : x < y ↔ ¬y ≤ x.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
Lemma Qcplus_le_mono_l (x y z : Qc) : x ≤ y ↔ z + x ≤ z + y.
Proof.
split; intros.
* by apply Qcplus_le_compat.
* replace x with ((0 - z) + (z + x)) by ring.
replace y with ((0 - z) + (z + y)) by ring.
by apply Qcplus_le_compat.
Qed.
Lemma Qcplus_le_mono_r (x y z : Qc) : x ≤ y ↔ x + z ≤ y + z.
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y ↔ z + x < z + y.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y ↔ x + z < y + z.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
Instance: Injective (=) (=) Qcopp.
Proof.
intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Instance: ∀ z, Injective (=) (=) (Qcplus z).
Proof.
intros z x y H. by apply (anti_symmetric (≤));
rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
Instance: ∀ z, Injective (=) (=) (λ x, x + z).
Proof.
intros z x y H. by apply (anti_symmetric (≤));
rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x → 0 ≤ y → 0 < x + y.
Proof.
intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0 ≤ x → 0 < y → 0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed.
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x → 0 < y → 0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0 ≤ x → 0 ≤ y → 0 ≤ x + y.
Proof.
intros. transitivity (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0 → y ≤ 0 → x + y < 0.
Proof.
intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x ≤ 0 → y < 0 → x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0 → y < 0 → x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x ≤ 0 → y ≤ 0 → x + y ≤ 0.
Proof.
intros. transitivity (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
Lemma Qcmult_le_mono_nonneg_l x y z : 0 ≤ z → x ≤ y → z * x ≤ z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0 ≤ z → x ≤ y → x * z ≤ y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z → x ≤ y ↔ z * x ≤ z * y.
Proof.
split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
rewrite !Qcle_ngt, !(Qcmult_comm z).
intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z → x ≤ y ↔ x * z ≤ y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z → x < y ↔ z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z → x < y ↔ x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x → 0 < y → 0 < x * y.
Proof.
intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0 ≤ x → 0 ≤ y → 0 ≤ x * y.
Proof.
intros. transitivity (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_le_mono_nonneg_r.
Qed.
Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m → n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m ↔ n = m.
Proof. split. auto using Z2Qc_inj. by intros ->. Qed.
Lemma Z2Qc_inj_le n m : (n ≤ m)%Z ↔ Qc_of_Z n ≤ Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z ↔ Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
apply Qc_is_canon; simpl.
by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
Robbert Krebbers
committed
(** * Conversions *)
Robbert Krebbers
committed
Lemma Z_to_nat_nonpos x : (x ≤ 0)%Z → Z.to_nat x = 0.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
Robbert Krebbers
committed
(** The function [Z_to_option_N] converts an integer [x] into a natural number
by giving [None] in case [x] is negative. *)
Robbert Krebbers
committed
Definition Z_to_option_N (x : Z) : option N :=
| Z0 => Some N0 | Zpos p => Some (Npos p) | Zneg _ => None
Definition Z_to_option_nat (x : Z) : option nat :=
match x with
| Z0 => Some 0 | Zpos p => Some (Pos.to_nat p) | Zneg _ => None
end.
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
Lemma Z_to_option_N_Some x y :
Z_to_option_N x = Some y ↔ (0 ≤ x)%Z ∧ y = Z.to_N x.
Proof.
split.
* intros. by destruct x; simpl in *; simplify_equality;
auto using Zle_0_pos.
* intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_N_Some_alt x y :
Z_to_option_N x = Some y ↔ (0 ≤ x)%Z ∧ x = Z.of_N y.
Proof.
rewrite Z_to_option_N_Some.
split; intros [??]; subst; auto using N2Z.id, Z2N.id, eq_sym.
Qed.
Lemma Z_to_option_nat_Some x y :
Z_to_option_nat x = Some y ↔ (0 ≤ x)%Z ∧ y = Z.to_nat x.
Proof.
split.
* intros. by destruct x; simpl in *; simplify_equality;
auto using Zle_0_pos.
* intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_nat_Some_alt x y :
Z_to_option_nat x = Some y ↔ (0 ≤ x)%Z ∧ x = Z.of_nat y.
Proof.
rewrite Z_to_option_nat_Some.
split; intros [??]; subst; auto using Nat2Z.id, Z2Nat.id, eq_sym.
Qed.
Robbert Krebbers
committed
Lemma Z_to_option_of_nat x : Z_to_option_nat (Z.of_nat x) = Some x.
Proof. apply Z_to_option_nat_Some_alt. auto using Nat2Z.is_nonneg. Qed.
(** Some correspondence lemmas between [nat] and [N] that are not part of the
standard library. We declare a hint database [natify] to rewrite a goal
involving [N] into a corresponding variant involving [nat]. *)
Lemma N_to_nat_lt x y : N.to_nat x < N.to_nat y ↔ (x < y)%N.
Proof. by rewrite <-N.compare_lt_iff, nat_compare_lt, N2Nat.inj_compare. Qed.
Lemma N_to_nat_le x y : N.to_nat x ≤ N.to_nat y ↔ (x ≤ y)%N.
Proof. by rewrite <-N.compare_le_iff, nat_compare_le, N2Nat.inj_compare. Qed.
Lemma N_to_nat_0 : N.to_nat 0 = 0.
Proof. done. Qed.
Lemma N_to_nat_1 : N.to_nat 1 = 1.
Proof. done. Qed.
Lemma N_to_nat_div x y : N.to_nat (x `div` y) = N.to_nat x `div` N.to_nat y.
Proof.
destruct (decide (y = 0%N)); [by subst; destruct x |].
apply Nat.div_unique with (N.to_nat (x `mod` y)).
{ by apply N_to_nat_lt, N.mod_lt. }
rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.
(* We have [x `mod` 0 = 0] on [nat], and [x `mod` 0 = x] on [N]. *)
Lemma N_to_nat_mod x y :
Robbert Krebbers
committed
y ≠ 0%N → N.to_nat (x `mod` y) = N.to_nat x `mod` N.to_nat y.
intros. apply Nat.mod_unique with (N.to_nat (x `div` y)).
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
{ by apply N_to_nat_lt, N.mod_lt. }
rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.
Hint Rewrite <-N2Nat.inj_iff : natify.
Hint Rewrite <-N_to_nat_lt : natify.
Hint Rewrite <-N_to_nat_le : natify.
Hint Rewrite Nat2N.id : natify.
Hint Rewrite N2Nat.inj_add : natify.
Hint Rewrite N2Nat.inj_mul : natify.
Hint Rewrite N2Nat.inj_sub : natify.
Hint Rewrite N2Nat.inj_succ : natify.
Hint Rewrite N2Nat.inj_pred : natify.
Hint Rewrite N_to_nat_div : natify.
Hint Rewrite N_to_nat_0 : natify.
Hint Rewrite N_to_nat_1 : natify.
Ltac natify := repeat autorewrite with natify in *.
Hint Extern 100 (Nlt _ _) => natify : natify.
Hint Extern 100 (Nle _ _) => natify : natify.
Hint Extern 100 (@eq N _ _) => natify : natify.
Hint Extern 100 (lt _ _) => natify : natify.
Hint Extern 100 (le _ _) => natify : natify.
Hint Extern 100 (@eq nat _ _) => natify : natify.
Instance: ∀ x, PropHolds (0 < x)%N → PropHolds (0 < N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.
Instance: ∀ x, PropHolds (0 ≤ x)%N → PropHolds (0 ≤ N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.