Commit dbbda8cb authored by Robbert Krebbers's avatar Robbert Krebbers

Prove that lockset ⊆ dom memory.

parent 7f9c5994
......@@ -815,6 +815,10 @@ Section prod_relation.
End prod_relation.
(** ** Other *)
Lemma and_wlog_l (P Q : Prop) : (Q P) Q (P Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P (P Q) (P Q).
Proof. tauto. Qed.
Instance: A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. red. trivial. Qed.
Instance: A (x : A), Associative (=) (λ _ _ : A, x).
......
......@@ -35,6 +35,10 @@ Section simple_collection.
Qed.
Lemma collection_positive_l_alt X Y : X X Y .
Proof. eauto using collection_positive_l. Qed.
Lemma elem_of_singleton_1 x y : x {[y]} x = y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_singleton_2 x y : x = y x {[y]}.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_subseteq_singleton x X : x X {[ x ]} X.
Proof.
split.
......
......@@ -264,7 +264,11 @@ Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.
Lemma Z_mod_pos a b : 0 < b 0 a `mod` b.
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x 0%nat 0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x 0%nat 0 x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y 0 x `mod` y.
Proof. apply Z.mod_pos_bound. Qed.
Hint Resolve Z.lt_le_incl : zpos.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment