Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stdpp
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
49
Issues
49
List
Boards
Labels
Service Desk
Milestones
Merge Requests
3
Merge Requests
3
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
stdpp
Commits
dbbda8cb
Commit
dbbda8cb
authored
Aug 26, 2014
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Prove that lockset ⊆ dom memory.
parent
7f9c5994
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
13 additions
and
1 deletion
+13
-1
theories/base.v
theories/base.v
+4
-0
theories/collections.v
theories/collections.v
+4
-0
theories/numbers.v
theories/numbers.v
+5
-1
No files found.
theories/base.v
View file @
dbbda8cb
...
...
@@ -815,6 +815,10 @@ Section prod_relation.
End
prod_relation
.
(** ** Other *)
Lemma
and_wlog_l
(
P
Q
:
Prop
)
:
(
Q
→
P
)
→
Q
→
(
P
∧
Q
).
Proof
.
tauto
.
Qed
.
Lemma
and_wlog_r
(
P
Q
:
Prop
)
:
P
→
(
P
→
Q
)
→
(
P
∧
Q
).
Proof
.
tauto
.
Qed
.
Instance
:
∀
A
B
(
x
:
B
),
Commutative
(=)
(
λ
_
_
:
A
,
x
).
Proof
.
red
.
trivial
.
Qed
.
Instance
:
∀
A
(
x
:
A
),
Associative
(=)
(
λ
_
_
:
A
,
x
).
...
...
theories/collections.v
View file @
dbbda8cb
...
...
@@ -35,6 +35,10 @@ Section simple_collection.
Qed
.
Lemma
collection_positive_l_alt
X
Y
:
X
≢
∅
→
X
∪
Y
≢
∅
.
Proof
.
eauto
using
collection_positive_l
.
Qed
.
Lemma
elem_of_singleton_1
x
y
:
x
∈
{[
y
]}
→
x
=
y
.
Proof
.
by
rewrite
elem_of_singleton
.
Qed
.
Lemma
elem_of_singleton_2
x
y
:
x
=
y
→
x
∈
{[
y
]}.
Proof
.
by
rewrite
elem_of_singleton
.
Qed
.
Lemma
elem_of_subseteq_singleton
x
X
:
x
∈
X
↔
{[
x
]}
⊆
X
.
Proof
.
split
.
...
...
theories/numbers.v
View file @
dbbda8cb
...
...
@@ -264,7 +264,11 @@ Arguments Z.modulo _ _ : simpl never.
Arguments
Z
.
quot
_
_
:
simpl
never
.
Arguments
Z
.
rem
_
_
:
simpl
never
.
Lemma
Z_mod_pos
a
b
:
0
<
b
→
0
≤
a
`
mod
`
b
.
Lemma
Z_to_nat_neq_0_pos
x
:
Z
.
to_nat
x
≠
0
%
nat
→
0
<
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
Z_to_nat_neq_0_nonneg
x
:
Z
.
to_nat
x
≠
0
%
nat
→
0
≤
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
Z_mod_pos
x
y
:
0
<
y
→
0
≤
x
`
mod
`
y
.
Proof
.
apply
Z
.
mod_pos_bound
.
Qed
.
Hint
Resolve
Z
.
lt_le_incl
:
zpos
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment