Newer
Older
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
From prelude Require Export base tactics orders.
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
∀ x, x ∈ X → x ∈ Y.
Typeclasses Opaque collection_subseteq.
(** * Basic theorems *)
Section simple_collection.
Context `{SimpleCollection A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Lemma elem_of_empty x : x ∈ ∅ ↔ False.
Proof. split. apply not_elem_of_empty. done. Qed.
Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Global Instance: EmptySpec C.
Proof. firstorder auto. Qed.
Global Instance: JoinSemiLattice C.
Proof. firstorder auto. Qed.
Global Instance: AntiSymm (≡) (@collection_subseteq A C _).
Proof. done. Qed.
Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y.
Proof. done. Qed.
Lemma elem_of_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. firstorder. Qed.
Lemma elem_of_equiv_alt X Y :
X ≡ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Proof. firstorder. Qed.
Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X.
Proof. firstorder. Qed.
Lemma collection_positive_l X Y : X ∪ Y ≡ ∅ → X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
Qed.
Lemma collection_positive_l_alt X Y : X ≢ ∅ → X ∪ Y ≢ ∅.
Proof. eauto using collection_positive_l. Qed.
Lemma elem_of_singleton_1 x y : x ∈ {[y]} → x = y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_singleton_2 x y : x = y → x ∈ {[y]}.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X.
Proof.
split.
- intros ??. rewrite elem_of_singleton. by intros ->.
- intros Ex. by apply (Ex x), elem_of_singleton.
Global Instance singleton_proper : Proper ((=) ==> (≡)) (singleton (B:=C)).
Global Instance elem_of_proper :
Proper ((=) ==> (≡) ==> iff) ((∈) : A → C → Prop) | 5.
Proof. intros ???; subst. firstorder. Qed.
Lemma elem_of_union_list Xs x : x ∈ ⋃ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X.
Proof.
split.
- induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
- intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
Lemma non_empty_singleton x : ({[ x ]} : C) ≢ ∅.
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
Lemma not_elem_of_singleton x y : x ∉ {[ y ]} ↔ x ≠ y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. rewrite elem_of_union. tauto. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma elem_of_equiv_L X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. unfold_leibniz. apply elem_of_equiv. Qed.
Lemma elem_of_equiv_alt_L X Y :
X = Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X.
Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
Lemma collection_positive_l_L X Y : X ∪ Y = ∅ → X = ∅.
Proof. unfold_leibniz. apply collection_positive_l. Qed.
Lemma collection_positive_l_alt_L X Y : X ≠ ∅ → X ∪ Y ≠ ∅.
Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
Lemma non_empty_singleton_L x : {[ x ]} ≠ ∅.
Proof. unfold_leibniz. apply non_empty_singleton. Qed.
End leibniz.
Section dec.
Context `{∀ X Y : C, Decision (X ⊆ Y)}.
Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100.
Proof.
refine (cast_if (decide_rel (⊆) {[ x ]} X));
by rewrite elem_of_subseteq_singleton.
Defined.
End dec.
End simple_collection.
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].
This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P ↔ Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.
Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.
Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P → Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q → P := proj2 (set_unfold P Q).
Lemma set_unfold_impl P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P → Q) (P' → Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∧ Q) (P' ∧ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∨ Q) (P' ∨ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ↔ Q) (P' ↔ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P' → SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A → Prop) :
(∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∀ x, P x) (∀ x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A → Prop) :
(∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∃ x, P x) (∃ x, P' x).
Proof. constructor. naive_solver. Qed.
(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_ → _) _) =>
class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_ ∧ _) _) =>
class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_ ∨ _) _) =>
class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_ ↔ _) _) =>
class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold (∀ _, _) _) =>
class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold (∃ _, _) _) =>
class_apply set_unfold_exist : typeclass_instances.
Section set_unfold_simple.
Context `{SimpleCollection A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Global Instance set_unfold_empty x : SetUnfold (x ∈ ∅) False.
Proof. constructor; apply elem_of_empty. Qed.
Global Instance set_unfold_singleton x y : SetUnfold (x ∈ {[ y ]}) (x = y).
Proof. constructor; apply elem_of_singleton. Qed.
Global Instance set_unfold_union x X Y P Q :
SetUnfold (x ∈ X) P → SetUnfold (x ∈ Y) Q → SetUnfold (x ∈ X ∪ Y) (P ∨ Q).
Proof.
intros ??; constructor.
by rewrite elem_of_union, (set_unfold (x ∈ X) P), (set_unfold (x ∈ Y) Q).
Qed.
Global Instance set_unfold_equiv_same X : SetUnfold (X ≡ X) True | 1.
Proof. done. Qed.
Global Instance set_unfold_equiv_empty_l X (P : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (∅ ≡ X) (∀ x, ¬P x) | 5.
Proof.
intros ?; constructor.
rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
Qed.
Global Instance set_unfold_equiv_empty_r (P : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (X ≡ ∅) (∀ x, ¬P x) | 5.
Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
Global Instance set_unfold_equiv (P Q : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) →
SetUnfold (X ≡ Y) (∀ x, P x ↔ Q x) | 10.
Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
Global Instance set_unfold_subseteq (P Q : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) →
SetUnfold (X ⊆ Y) (∀ x, P x → Q x).
Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
Global Instance set_unfold_subset (P Q : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) →
SetUnfold (X ⊂ Y) ((∀ x, P x → Q x) ∧ ¬∀ x, P x ↔ Q x).
Proof.
constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
repeat f_equiv; naive_solver.
Qed.
Context `{!LeibnizEquiv C}.
Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
Proof. done. Qed.
Global Instance set_unfold_equiv_empty_l_L X (P : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (∅ = X) (∀ x, ¬P x) | 5.
Proof.
constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
Qed.
Global Instance set_unfold_equiv_empty_r_L (P : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (X = ∅) (∀ x, ¬P x) | 5.
Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
Global Instance set_unfold_equiv_L (P Q : A → Prop) :
(∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) →
SetUnfold (X = Y) (∀ x, P x ↔ Q x) | 10.
Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.
Section set_unfold.
Context `{Collection A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Global Instance set_unfold_intersection x X Y P Q :
SetUnfold (x ∈ X) P → SetUnfold (x ∈ Y) Q → SetUnfold (x ∈ X ∩ Y) (P ∧ Q).
Proof.
intros ??; constructor. by rewrite elem_of_intersection,
(set_unfold (x ∈ X) P), (set_unfold (x ∈ Y) Q).
Qed.
Global Instance set_unfold_difference x X Y P Q :
SetUnfold (x ∈ X) P → SetUnfold (x ∈ Y) Q → SetUnfold (x ∈ X ∖ Y) (P ∧ ¬Q).
Proof.
intros ??; constructor. by rewrite elem_of_difference,
(set_unfold (x ∈ X) P), (set_unfold (x ∈ Y) Q).
Qed.
End set_unfold.
Section set_unfold_monad.
Context `{CollectionMonad M} {A : Type}.
Implicit Types x y : A.
Global Instance set_unfold_ret x y : SetUnfold (x ∈ mret y) (x = y).
Proof. constructor; apply elem_of_ret. Qed.
Global Instance set_unfold_bind {B} (f : A → M B) X (P Q : A → Prop) :
(∀ y, SetUnfold (y ∈ X) (P y)) → (∀ y, SetUnfold (x ∈ f y) (Q y)) →
SetUnfold (x ∈ X ≫= f) (∃ y, Q y ∧ P y).
Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
Global Instance set_unfold_fmap {B} (f : A → B) X (P : A → Prop) :
(∀ y, SetUnfold (y ∈ X) (P y)) →
SetUnfold (x ∈ f <$> X) (∃ y, x = f y ∧ P y).
Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
Global Instance set_unfold_join (X : M (M A)) (P : M A → Prop) :
(∀ Y, SetUnfold (Y ∈ X) (P Y)) → SetUnfold (x ∈ mjoin X) (∃ Y, x ∈ Y ∧ P Y).
Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.
Ltac set_unfold :=
let rec unfold_hyps :=
try match goal with
| H : _ |- _ =>
apply set_unfold_1 in H; revert H;
first [unfold_hyps; intros H | intros H; fail 1]
end in
apply set_unfold_2; unfold_hyps; csimpl in *.
(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
try fast_done;
intros; setoid_subst;
set_unfold;
intros; setoid_subst;
try match goal with |- _ ∈ _ => apply dec_stable end;
naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.
Hint Extern 1000 (_ ∉ _) => set_solver : set_solver.
Hint Extern 1000 (_ ∈ _) => set_solver : set_solver.
Hint Extern 1000 (_ ⊆ _) => set_solver : set_solver.
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
match mx with None => ∅ | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
match l with [] => ∅ | x :: l => {[ x ]} ∪ of_list l end.
Section of_option_list.
Context `{SimpleCollection A C}.
Lemma elem_of_of_option (x : A) mx: x ∈ of_option mx ↔ mx = Some x.
Proof. destruct mx; set_solver. Qed.
Lemma elem_of_of_list (x : A) l : x ∈ of_list l ↔ x ∈ l.
Proof.
split.
- induction l; simpl; [by rewrite elem_of_empty|].
rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
- induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Global Instance set_unfold_of_option (mx : option A) x :
SetUnfold (x ∈ of_option mx) (mx = Some x).
Proof. constructor; apply elem_of_of_option. Qed.
Global Instance set_unfold_of_list (l : list A) x P :
SetUnfold (x ∈ l) P → SetUnfold (x ∈ of_list l) P.
Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x ∈ l) P). Qed.
Section list_unfold.
Context {A : Type}.
Implicit Types x : A.
Implicit Types l : list A.
Global Instance set_unfold_nil x : SetUnfold (x ∈ []) False.
Proof. constructor; apply elem_of_nil. Qed.
Global Instance set_unfold_cons x y l P :
SetUnfold (x ∈ l) P → SetUnfold (x ∈ y :: l) (x = y ∨ P).
Proof. constructor. by rewrite elem_of_cons, (set_unfold (x ∈ l) P). Qed.
Global Instance set_unfold_app x l k P Q :
SetUnfold (x ∈ l) P → SetUnfold (x ∈ k) Q → SetUnfold (x ∈ l ++ k) (P ∨ Q).
Proof.
intros ??; constructor.
by rewrite elem_of_app, (set_unfold (x ∈ l) P), (set_unfold (x ∈ k) Q).
Qed.
Global Instance set_unfold_included l k (P Q : A → Prop) :
(∀ x, SetUnfold (x ∈ l) (P x)) → (∀ x, SetUnfold (x ∈ k) (Q x)) →
SetUnfold (l `included` k) (∀ x, P x → Q x).
Proof. by constructor; unfold included; set_unfold. Qed.
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
λ P dec A x, match dec with left H => x H | _ => ∅ end.
Section collection_monad_base.
Context `{CollectionMonad M}.
Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
x ∈ guard P; X ↔ P ∧ x ∈ X.
Proof.
unfold mguard, collection_guard; simpl; case_match;
rewrite ?elem_of_empty; naive_solver.
Qed.
Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
P → x ∈ X → x ∈ guard P; X.
Proof. by rewrite elem_of_guard. Qed.
Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X ≡ ∅ ↔ ¬P ∨ X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
destruct (decide P); naive_solver.
Qed.
Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
SetUnfold (x ∈ X) Q → SetUnfold (x ∈ guard P; X) (P ∧ Q).
Proof. constructor. by rewrite elem_of_guard, (set_unfold (x ∈ X) Q). Qed.
Lemma bind_empty {A B} (f : A → M B) X :
X ≫= f ≡ ∅ ↔ X ≡ ∅ ∨ ∀ x, x ∈ X → f x ≡ ∅.
End collection_monad_base.
(** * More theorems *)
Section collection.
Context `{Collection A C}.
Proof. split. apply _. firstorder auto. set_solver. Qed.
Global Instance difference_proper :
Proper ((≡) ==> (≡) ==> (≡)) (@difference C _).
Proof.
intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
by rewrite !elem_of_difference, HX, HY.
Qed.
Lemma non_empty_inhabited x X : x ∈ X → X ≢ ∅.
Lemma intersection_singletons x : ({[x]} : C) ∩ {[x]} ≡ {[x]}.
Lemma subseteq_empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅.
Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z.
Lemma difference_union_distr_r X Y Z : Z ∖ (X ∪ Y) ≡ (Z ∖ X) ∩ (Z ∖ Y).
Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z.
Lemma disjoint_union_difference X Y : X ∩ Y ≡ ∅ → (X ∪ Y) ∖ X ≡ Y.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma intersection_singletons_L x : {[x]} ∩ {[x]} = {[x]}.
Proof. unfold_leibniz. apply intersection_singletons. Qed.
Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y.
Proof. unfold_leibniz. apply difference_twice. Qed.
Lemma subseteq_empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅.
Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
Lemma difference_diag_L X : X ∖ X = ∅.
Proof. unfold_leibniz. apply difference_diag. Qed.
Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z.
Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Lemma difference_union_distr_r_L X Y Z : Z ∖ (X ∪ Y) = (Z ∖ X) ∩ (Z ∖ Y).
Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
Lemma difference_intersection_distr_l_L X Y Z :
(X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z.
Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Lemma disjoint_union_difference_L X Y : X ∩ Y = ∅ → (X ∪ Y) ∖ X = Y.
Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
Context `{∀ (x : A) (X : C), Decision (x ∈ X)}.
Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed.
Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y.
Proof. rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed.
Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X.
Proof.
split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
destruct (decide (x ∈ X)); intuition.
Qed.
Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅.
Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y.
Context `{!LeibnizEquiv C}.
Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X.
Proof. unfold_leibniz. apply union_difference. Qed.
Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. unfold_leibniz. apply non_empty_difference. Qed.
Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y.
Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
End dec.
End collection.
Section collection_ops.
Context `{CollectionOps A C}.
Lemma elem_of_intersection_with_list (f : A → A → option A) Xs Y x :
x ∈ intersection_with_list f Y Xs ↔ ∃ xs y,
Forall2 (∈) xs Xs ∧ y ∈ Y ∧ foldr (λ x, (≫= f x)) (Some y) xs = Some x.
Proof.
split.
- revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
- intros (xs & y & Hxs & ? & Hx). revert x Hx.
induction Hxs; intros; simplify_option_eq; [done |].
rewrite elem_of_intersection_with. naive_solver.
Qed.
Lemma intersection_with_list_ind (P Q : A → Prop) f Xs Y :
(∀ y, y ∈ Y → P y) →
Forall (λ X, ∀ x, x ∈ X → Q x) Xs →
(∀ x y z, Q x → P y → f x y = Some z → P z) →
∀ x, x ∈ intersection_with_list f Y Xs → P x.
Proof.
intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
intros x Hx. rewrite elem_of_intersection_with in Hx.
decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
Qed.
End collection_ops.
(** * Sets without duplicates up to an equivalence *)
Section NoDup.
Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Definition elem_of_upto (x : A) (X : B) := ∃ y, y ∈ X ∧ R x y.
Definition set_NoDup (X : B) := ∀ x y, x ∈ X → y ∈ X → R x y → x = y.
Global Instance: Proper ((≡) ==> iff) (elem_of_upto x).
Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Global Instance: Proper (R ==> (≡) ==> iff) elem_of_upto.
Proof.
intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
- rewrite <-E1, <-E2; intuition.
- rewrite E1, E2; intuition.
Qed.
Global Instance: Proper ((≡) ==> iff) set_NoDup.
Proof. firstorder. Qed.
Lemma elem_of_upto_elem_of x X : x ∈ X → elem_of_upto x X.
Proof. unfold elem_of_upto. set_solver. Qed.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} ↔ R x y.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma elem_of_upto_union X Y x :
elem_of_upto x (X ∪ Y) ↔ elem_of_upto x X ∨ elem_of_upto x Y.
Proof. unfold elem_of_upto. set_solver. Qed.
Lemma not_elem_of_upto x X : ¬elem_of_upto x X → ∀ y, y ∈ X → ¬R x y.
Proof. unfold elem_of_upto. set_solver. Qed.
Proof. unfold set_NoDup. set_solver. Qed.
Lemma set_NoDup_add x X :
¬elem_of_upto x X → set_NoDup X → set_NoDup ({[ x ]} ∪ X).
Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
Lemma set_NoDup_inv_add x X :
x ∉ X → set_NoDup ({[ x ]} ∪ X) → ¬elem_of_upto x X.
Proof.
intros Hin Hnodup [y [??]].
rewrite (Hnodup x y) in Hin; set_solver.
Qed.
Lemma set_NoDup_inv_union_l X Y : set_NoDup (X ∪ Y) → set_NoDup X.
Proof. unfold set_NoDup. set_solver. Qed.
Lemma set_NoDup_inv_union_r X Y : set_NoDup (X ∪ Y) → set_NoDup Y.
Proof. unfold set_NoDup. set_solver. Qed.
End NoDup.
(** * Quantifiers *)
Section quantifiers.
Context `{SimpleCollection A B} (P : A → Prop).
Definition set_Forall X := ∀ x, x ∈ X → P x.
Definition set_Exists X := ∃ x, x ∈ X ∧ P x.
Lemma set_Forall_empty : set_Forall ∅.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_singleton x : set_Forall {[ x ]} ↔ P x.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_union X Y : set_Forall X → set_Forall Y → set_Forall (X ∪ Y).
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_union_inv_1 X Y : set_Forall (X ∪ Y) → set_Forall X.
Proof. unfold set_Forall. set_solver. Qed.
Lemma set_Forall_union_inv_2 X Y : set_Forall (X ∪ Y) → set_Forall Y.
Proof. unfold set_Forall. set_solver. Qed.
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_singleton x : set_Exists {[ x ]} ↔ P x.
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_union_1 X Y : set_Exists X → set_Exists (X ∪ Y).
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_union_2 X Y : set_Exists Y → set_Exists (X ∪ Y).
Proof. unfold set_Exists. set_solver. Qed.
Lemma set_Exists_union_inv X Y :
set_Exists (X ∪ Y) → set_Exists X ∨ set_Exists Y.
Proof. unfold set_Exists. set_solver. Qed.
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
End quantifiers.
Section more_quantifiers.
Context `{SimpleCollection A B}.
Lemma set_Forall_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
set_Forall P X → set_Forall Q X.
Proof. unfold set_Forall. naive_solver. Qed.
Lemma set_Exists_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
set_Exists P X → set_Exists Q X.
Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
(n : nat) (X : C) : list A :=
match n with
| 0 => []
| S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X)
end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A → Prop :=
| Forall_fresh_nil : Forall_fresh X []
| Forall_fresh_cons x xs :
x ∉ xs → x ∉ X → Forall_fresh X xs → Forall_fresh X (x :: xs).
Section fresh.
Context `{FreshSpec A C}.
Global Instance fresh_proper: Proper ((≡) ==> (=)) (fresh (C:=C)).
Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
Global Instance fresh_list_proper:
Proper ((=) ==> (≡) ==> (=)) (fresh_list (C:=C)).
intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
apply IH. by rewrite E.
Qed.
Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs → NoDup xs.
Proof. induction 1; by constructor. Qed.
Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs → x ∈ xs → x ∉ X.
Proof.
intros HX; revert x; rewrite <-Forall_forall.
by induction HX; constructor.
Qed.
Lemma Forall_fresh_alt X xs :
Forall_fresh X xs ↔ NoDup xs ∧ ∀ x, x ∈ xs → x ∉ X.
Proof.
split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
rewrite <-Forall_forall.
intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
Qed.
Lemma Forall_fresh_subseteq X Y xs :
Forall_fresh X xs → Y ⊆ X → Forall_fresh Y xs.
Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Lemma fresh_list_length n X : length (fresh_list n X) = n.
Proof. revert X. induction n; simpl; auto. Qed.
Lemma fresh_list_is_fresh n X x : x ∈ fresh_list n X → x ∉ X.
Proof.
revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
Qed.
Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
Proof.
revert X. induction n; simpl; constructor; auto.
intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Qed.
Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
Proof.
rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
Qed.
End fresh.
(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
Context `{CollectionMonad M}.
Global Instance collection_fmap_mono {A B} :
Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (@fmap M _ A B).
Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
Global Instance collection_fmap_proper {A B} :
Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B).
Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
Global Instance collection_bind_mono {A B} :
Proper (((=) ==> (⊆)) ==> (⊆) ==> (⊆)) (@mbind M _ A B).
Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
Global Instance collection_bind_proper {A B} :
Proper (((=) ==> (≡)) ==> (≡) ==> (≡)) (@mbind M _ A B).
Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
Global Instance collection_join_mono {A} :
Proper ((⊆) ==> (⊆)) (@mjoin M _ A).
Proof. intros X Y ?; set_solver. Qed.
Global Instance collection_join_proper {A} :
Proper ((≡) ==> (≡)) (@mjoin M _ A).
Proof. intros X Y [??]; split; set_solver. Qed.
Lemma collection_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x.
Lemma collection_guard_True {A} `{Decision P} (X : M A) : P → guard P; X ≡ X.
Lemma collection_fmap_compose {A B C} (f : A → B) (g : B → C) (X : M A) :
Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) :
y ∈ f <$> X → ∃ x, y = f x ∧ x ∈ X.
Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) :
x ∈ X → f x ∈ f <$> X.
Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) :
x ∈ X → y = f x → y ∈ f <$> X.
Lemma elem_of_mapM {A B} (f : A → M B) l k :
l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k.
Proof.
split.
- revert l. induction k; set_solver by eauto.
Qed.
Lemma collection_mapM_length {A B} (f : A → M B) l k :
l ∈ mapM f k → length l = length k.
Proof. revert l; induction k; set_solver by eauto. Qed.
Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k :
Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l.
Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k :
l ∈ mapM f k → Forall (λ x, ∀ y, y ∈ f x → P y) k → Forall P l.
Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B) (P: B → C → Prop) l1 l2 k :
l1 ∈ mapM f k → Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 →
Forall2 P l1 l2.
Proof.
rewrite elem_of_mapM. intros Hl1. revert l2.
induction Hl1; inversion_clear 1; constructor; auto.
Qed.
End collection_monad.
(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) := ∃ l : list A, ∀ x, x ∈ X → x ∈ l.
Section finite.
Context `{SimpleCollection A B}.
Global Instance set_finite_subseteq :
Proper (flip (⊆) ==> impl) (@set_finite A B _).
Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
Global Instance set_finite_proper : Proper ((≡) ==> iff) (@set_finite A B _).
Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
Lemma empty_finite : set_finite ∅.
Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
Lemma union_finite X Y : set_finite X → set_finite Y → set_finite (X ∪ Y).
Proof.
intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
rewrite elem_of_union, elem_of_app; naive_solver.
Qed.
Lemma union_finite_inv_l X Y : set_finite (X ∪ Y) → set_finite X.
Proof. intros [l ?]; exists l; set_solver. Qed.
Lemma union_finite_inv_r X Y : set_finite (X ∪ Y) → set_finite Y.
Proof. intros [l ?]; exists l; set_solver. Qed.
End finite.
Section more_finite.
Context `{Collection A B}.
Lemma intersection_finite_l X Y : set_finite X → set_finite (X ∩ Y).
Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
Lemma intersection_finite_r X Y : set_finite Y → set_finite (X ∩ Y).
Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
Lemma difference_finite X Y : set_finite X → set_finite (X ∖ Y).
Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
Lemma difference_finite_inv X Y `{∀ x, Decision (x ∈ Y)} :
set_finite Y → set_finite (X ∖ Y) → set_finite X.
Proof.
intros [l ?] [k ?]; exists (l ++ k).
intros x ?; destruct (decide (x ∈ Y)); rewrite elem_of_app; set_solver.