Newer
Older
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export prelude.base prelude.tactics prelude.orders.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
∀ x, x ∈ X → x ∈ Y.
(** * Basic theorems *)
Section simple_collection.
Context `{SimpleCollection A C}.
Lemma elem_of_empty x : x ∈ ∅ ↔ False.
Proof. split. apply not_elem_of_empty. done. Qed.
Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y.
Proof. intros. apply elem_of_union. auto. Qed.
Global Instance: EmptySpec C.
Proof. firstorder auto. Qed.
Global Instance: JoinSemiLattice C.
Proof. firstorder auto. Qed.
Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y.
Proof. done. Qed.
Lemma elem_of_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. firstorder. Qed.
Lemma elem_of_equiv_alt X Y :
X ≡ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Proof. firstorder. Qed.
Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X.
Proof. firstorder. Qed.
Lemma collection_positive_l X Y : X ∪ Y ≡ ∅ → X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
Qed.
Lemma collection_positive_l_alt X Y : X ≢ ∅ → X ∪ Y ≢ ∅.
Proof. eauto using collection_positive_l. Qed.
Lemma elem_of_singleton_1 x y : x ∈ {[y]} → x = y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_singleton_2 x y : x = y → x ∈ {[y]}.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X.
Proof.
split.
* intros ??. rewrite elem_of_singleton. by intros ->.
* intros Ex. by apply (Ex x), elem_of_singleton.
Qed.
Global Instance singleton_proper : Proper ((=) ==> (≡)) singleton.
Proof. by repeat intro; subst. Qed.
Global Instance elem_of_proper: Proper ((=) ==> (≡) ==> iff) (∈) | 5.
Proof. intros ???; subst. firstorder. Qed.
Lemma elem_of_union_list Xs x : x ∈ ⋃ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X.
Proof.
split.
* induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
* intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
intros. apply elem_of_union_r; auto.
Qed.
Lemma non_empty_singleton x : {[ x ]} ≢ ∅.
Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
Lemma not_elem_of_singleton x y : x ∉ {[ y ]} ↔ x ≠ y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. rewrite elem_of_union. tauto. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma elem_of_equiv_L X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. unfold_leibniz. apply elem_of_equiv. Qed.
Lemma elem_of_equiv_alt_L X Y :
X = Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X).
Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X.
Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
Lemma collection_positive_l_L X Y : X ∪ Y = ∅ → X = ∅.
Proof. unfold_leibniz. apply collection_positive_l. Qed.
Lemma collection_positive_l_alt_L X Y : X ≠ ∅ → X ∪ Y ≠ ∅.
Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
Lemma non_empty_singleton_L x : {[ x ]} ≠ ∅.
Proof. unfold_leibniz. apply non_empty_singleton. Qed.
End leibniz.
Section dec.
Context `{∀ X Y : C, Decision (X ⊆ Y)}.
Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100.
Proof.
refine (cast_if (decide_rel (⊆) {[ x ]} X));
by rewrite elem_of_subseteq_singleton.
Defined.
End dec.
End simple_collection.
Definition of_option `{Singleton A C, Empty C} (x : option A) : C :=
match x with None => ∅ | Some a => {[ a ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
match l with [] => ∅ | x :: l => {[ x ]} ∪ of_list l end.
Section of_option_list.
Context `{SimpleCollection A C}.
Lemma elem_of_of_option (x : A) o : x ∈ of_option o ↔ o = Some x.
Proof.
destruct o; simpl;
rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
Qed.
Lemma elem_of_of_list (x : A) l : x ∈ of_list l ↔ x ∈ l.
Proof.
split.
* induction l; simpl; [by rewrite elem_of_empty|].
rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
* induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Qed.
End of_option_list.
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
λ P dec A x, match dec with left H => x H | _ => ∅ end.
Section collection_monad_base.
Context `{CollectionMonad M}.
Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
x ∈ guard P; X ↔ P ∧ x ∈ X.
Proof.
unfold mguard, collection_guard; simpl; case_match;
rewrite ?elem_of_empty; naive_solver.
Qed.
Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
P → x ∈ X → x ∈ guard P; X.
Proof. by rewrite elem_of_guard. Qed.
Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X ≡ ∅ ↔ ¬P ∨ X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
destruct (decide P); naive_solver.
Qed.
Lemma bind_empty {A B} (f : A → M B) X :
X ≫= f ≡ ∅ ↔ X ≡ ∅ ∨ ∀ x, x ∈ X → f x ≡ ∅.
Proof.
setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
naive_solver.
Qed.
End collection_monad_base.
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
let rec go H :=
lazymatch type of H with
| _ ∈ ∅ => apply elem_of_empty in H; destruct H
| ?x ∈ {[ ?y ]} =>
apply elem_of_singleton in H; try first [subst y | subst x]
| ?x ∉ {[ ?y ]} =>
apply not_elem_of_singleton in H
| _ ∈ _ ∪ _ =>
apply elem_of_union in H; destruct H as [H|H]; [go H|go H]
| _ ∉ _ ∪ _ =>
let H1 := fresh H in let H2 := fresh H in apply not_elem_of_union in H;
destruct H as [H1 H2]; go H1; go H2
| _ ∈ _ ∩ _ =>
let H1 := fresh H in let H2 := fresh H in apply elem_of_intersection in H;
destruct H as [H1 H2]; go H1; go H2
| _ ∈ _ ∖ _ =>
let H1 := fresh H in let H2 := fresh H in apply elem_of_difference in H;
destruct H as [H1 H2]; go H1; go H2
| ?x ∈ _ <$> _ =>
apply elem_of_fmap in H; destruct H as [? [? H]]; try (subst x); go H
| _ ∈ _ ≫= _ =>
let H1 := fresh H in let H2 := fresh H in apply elem_of_bind in H;
destruct H as [? [H1 H2]]; go H1; go H2
| ?x ∈ mret ?y =>
apply elem_of_ret in H; try first [subst y | subst x]
| _ ∈ mjoin _ ≫= _ =>
let H1 := fresh H in let H2 := fresh H in apply elem_of_join in H;
destruct H as [? [H1 H2]]; go H1; go H2
| _ ∈ guard _; _ =>
let H1 := fresh H in let H2 := fresh H in apply elem_of_guard in H;
destruct H as [H1 H2]; go H2
| _ ∈ of_option _ => apply elem_of_of_option in H
| _ ∈ of_list _ => apply elem_of_of_list in H
| _ => idtac
end in go H.
Tactic Notation "decompose_elem_of" :=
repeat_on_hyps (fun H => decompose_elem_of H).
Ltac decompose_empty := repeat
match goal with
| H : ∅ ≡ ∅ |- _ => clear H
| H : ∅ = ∅ |- _ => clear H
| H : ∅ ≡ _ |- _ => symmetry in H
| H : ∅ = _ |- _ => symmetry in H
| H : _ ∪ _ ≡ ∅ |- _ => apply empty_union in H; destruct H
| H : _ ∪ _ ≢ ∅ |- _ => apply non_empty_union in H; destruct H
| H : {[ _ ]} ≡ ∅ |- _ => destruct (non_empty_singleton _ H)
| H : _ ∪ _ = ∅ |- _ => apply empty_union_L in H; destruct H
| H : _ ∪ _ ≠ ∅ |- _ => apply non_empty_union_L in H; destruct H
| H : {[ _ ]} = ∅ |- _ => destruct (non_empty_singleton_L _ H)
| H : guard _ ; _ ≡ ∅ |- _ => apply guard_empty in H; destruct H
end.
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
Ltac unfold_elem_of :=
repeat_on_hyps (fun H =>
repeat match type of H with
| context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq in H
| context [ _ ⊂ _ ] => setoid_rewrite subset_spec in H
| context [ _ ≡ ∅ ] => setoid_rewrite elem_of_equiv_empty in H
| context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt in H
| context [ _ = ∅ ] => setoid_rewrite elem_of_equiv_empty_L in H
| context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
| context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty in H
| context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
| context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union in H
| context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection in H
| context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference in H
| context [ _ ∈ _ <$> _ ] => setoid_rewrite elem_of_fmap in H
| context [ _ ∈ mret _ ] => setoid_rewrite elem_of_ret in H
| context [ _ ∈ _ ≫= _ ] => setoid_rewrite elem_of_bind in H
| context [ _ ∈ mjoin _ ] => setoid_rewrite elem_of_join in H
| context [ _ ∈ guard _; _ ] => setoid_rewrite elem_of_guard in H
| context [ _ ∈ of_option _ ] => setoid_rewrite elem_of_of_option in H
| context [ _ ∈ of_list _ ] => setoid_rewrite elem_of_of_list in H
end);
repeat match goal with
| |- context [ _ ⊆ _ ] => setoid_rewrite elem_of_subseteq
| |- context [ _ ⊂ _ ] => setoid_rewrite subset_spec
| |- context [ _ ≡ ∅ ] => setoid_rewrite elem_of_equiv_empty
| |- context [ _ ≡ _ ] => setoid_rewrite elem_of_equiv_alt
| |- context [ _ = ∅ ] => setoid_rewrite elem_of_equiv_empty_L
| |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
| |- context [ _ ∈ ∅ ] => setoid_rewrite elem_of_empty
| |- context [ _ ∈ {[ _ ]} ] => setoid_rewrite elem_of_singleton
| |- context [ _ ∈ _ ∪ _ ] => setoid_rewrite elem_of_union
| |- context [ _ ∈ _ ∩ _ ] => setoid_rewrite elem_of_intersection
| |- context [ _ ∈ _ ∖ _ ] => setoid_rewrite elem_of_difference
| |- context [ _ ∈ _ <$> _ ] => setoid_rewrite elem_of_fmap
| |- context [ _ ∈ mret _ ] => setoid_rewrite elem_of_ret
| |- context [ _ ∈ _ ≫= _ ] => setoid_rewrite elem_of_bind
| |- context [ _ ∈ mjoin _ ] => setoid_rewrite elem_of_join
| |- context [ _ ∈ guard _; _ ] => setoid_rewrite elem_of_guard
| |- context [ _ ∈ of_option _ ] => setoid_rewrite elem_of_of_option
| |- context [ _ ∈ of_list _ ] => setoid_rewrite elem_of_of_list
end.
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
Tactic Notation "solve_elem_of" tactic3(tac) :=
setoid_subst;
decompose_empty;
unfold_elem_of;
solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.
(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
Tactic Notation "esolve_elem_of" tactic3(tac) :=
setoid_subst;
decompose_empty;
unfold_elem_of;
naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
(** * More theorems *)
Section collection.
Context `{Collection A C}.
Global Instance: Lattice C.
Proof. split. apply _. firstorder auto. solve_elem_of. Qed.
Global Instance difference_proper : Proper ((≡) ==> (≡) ==> (≡)) (∖).
Proof.
intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
by rewrite !elem_of_difference, HX, HY.
Qed.
Lemma intersection_singletons x : {[x]} ∩ {[x]} ≡ {[x]}.
Proof. esolve_elem_of. Qed.
Lemma difference_twice X Y : (X ∖ Y) ∖ Y ≡ X ∖ Y.
Proof. esolve_elem_of. Qed.
Lemma subseteq_empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅.
Proof. esolve_elem_of. Qed.
Lemma difference_diag X : X ∖ X ≡ ∅.
Proof. esolve_elem_of. Qed.
Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z.
Proof. esolve_elem_of. Qed.
Lemma difference_union_distr_r X Y Z : Z ∖ (X ∪ Y) ≡ (Z ∖ X) ∩ (Z ∖ Y).
Proof. esolve_elem_of. Qed.
Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z.
Proof. esolve_elem_of. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma intersection_singletons_L x : {[x]} ∩ {[x]} = {[x]}.
Proof. unfold_leibniz. apply intersection_singletons. Qed.
Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y.
Proof. unfold_leibniz. apply difference_twice. Qed.
Lemma subseteq_empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅.
Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
Lemma difference_diag_L X : X ∖ X = ∅.
Proof. unfold_leibniz. apply difference_diag. Qed.
Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z.
Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Lemma difference_union_distr_r_L X Y Z : Z ∖ (X ∪ Y) = (Z ∖ X) ∩ (Z ∖ Y).
Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
Lemma difference_intersection_distr_l_L X Y Z :
(X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z.
Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
End leibniz.
Section dec.
Context `{∀ (x : A) (X : C), Decision (x ∈ X)}.
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed.
Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y.
Proof. rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed.
Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X.
Proof.
split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
destruct (decide (x ∈ X)); intuition.
Qed.
Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅.
Proof.
intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
destruct (decide (x ∈ X)); esolve_elem_of.
Qed.
Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y.
Proof. intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
Context `{!LeibnizEquiv C}.
Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X.
Proof. unfold_leibniz. apply union_difference. Qed.
Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. unfold_leibniz. apply non_empty_difference. Qed.
Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y.
Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
End dec.
End collection.
Section collection_ops.
Context `{CollectionOps A C}.
Lemma elem_of_intersection_with_list (f : A → A → option A) Xs Y x :
x ∈ intersection_with_list f Y Xs ↔ ∃ xs y,
Forall2 (∈) xs Xs ∧ y ∈ Y ∧ foldr (λ x, (≫= f x)) (Some y) xs = Some x.
Proof.
split.
* revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
* intros (xs & y & Hxs & ? & Hx). revert x Hx.
induction Hxs; intros; simplify_option_equality; [done |].
rewrite elem_of_intersection_with. naive_solver.
Qed.
Lemma intersection_with_list_ind (P Q : A → Prop) f Xs Y :
(∀ y, y ∈ Y → P y) →
Forall (λ X, ∀ x, x ∈ X → Q x) Xs →
(∀ x y z, Q x → P y → f x y = Some z → P z) →
∀ x, x ∈ intersection_with_list f Y Xs → P x.
Proof.
intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
intros x Hx. rewrite elem_of_intersection_with in Hx.
decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
Qed.
End collection_ops.
(** * Sets without duplicates up to an equivalence *)
Section NoDup.
Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Definition elem_of_upto (x : A) (X : B) := ∃ y, y ∈ X ∧ R x y.
Definition set_NoDup (X : B) := ∀ x y, x ∈ X → y ∈ X → R x y → x = y.
Global Instance: Proper ((≡) ==> iff) (elem_of_upto x).
Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Global Instance: Proper (R ==> (≡) ==> iff) elem_of_upto.
Proof.
intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
* rewrite <-E1, <-E2; intuition.
* rewrite E1, E2; intuition.
Qed.
Global Instance: Proper ((≡) ==> iff) set_NoDup.
Proof. firstorder. Qed.
Lemma elem_of_upto_elem_of x X : x ∈ X → elem_of_upto x X.
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_empty x : ¬elem_of_upto x ∅.
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} ↔ R x y.
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_union X Y x :
elem_of_upto x (X ∪ Y) ↔ elem_of_upto x X ∨ elem_of_upto x Y.
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma not_elem_of_upto x X : ¬elem_of_upto x X → ∀ y, y ∈ X → ¬R x y.
Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Lemma set_NoDup_empty: set_NoDup ∅.
Proof. unfold set_NoDup. solve_elem_of. Qed.
Lemma set_NoDup_add x X :
¬elem_of_upto x X → set_NoDup X → set_NoDup ({[ x ]} ∪ X).
Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
Lemma set_NoDup_inv_add x X :
x ∉ X → set_NoDup ({[ x ]} ∪ X) → ¬elem_of_upto x X.
Proof.
intros Hin Hnodup [y [??]].
rewrite (Hnodup x y) in Hin; solve_elem_of.
Qed.
Lemma set_NoDup_inv_union_l X Y : set_NoDup (X ∪ Y) → set_NoDup X.
Proof. unfold set_NoDup. solve_elem_of. Qed.
Lemma set_NoDup_inv_union_r X Y : set_NoDup (X ∪ Y) → set_NoDup Y.
Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
(** * Quantifiers *)
Section quantifiers.
Context `{SimpleCollection A B} (P : A → Prop).
Definition set_Forall X := ∀ x, x ∈ X → P x.
Definition set_Exists X := ∃ x, x ∈ X ∧ P x.
Lemma set_Forall_empty : set_Forall ∅.
Proof. unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_singleton x : set_Forall {[ x ]} ↔ P x.
Proof. unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_union X Y : set_Forall X → set_Forall Y → set_Forall (X ∪ Y).
Proof. unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_union_inv_1 X Y : set_Forall (X ∪ Y) → set_Forall X.
Proof. unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_union_inv_2 X Y : set_Forall (X ∪ Y) → set_Forall Y.
Proof. unfold set_Forall. solve_elem_of. Qed.
Lemma set_Exists_empty : ¬set_Exists ∅.
Proof. unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_singleton x : set_Exists {[ x ]} ↔ P x.
Proof. unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_union_1 X Y : set_Exists X → set_Exists (X ∪ Y).
Proof. unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_union_2 X Y : set_Exists Y → set_Exists (X ∪ Y).
Proof. unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_union_inv X Y :
set_Exists (X ∪ Y) → set_Exists X ∨ set_Exists Y.
Proof. unfold set_Exists. esolve_elem_of. Qed.
End quantifiers.
Section more_quantifiers.
Context `{SimpleCollection A B}.
Lemma set_Forall_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
set_Forall P X → set_Forall Q X.
Proof. unfold set_Forall. naive_solver. Qed.
Lemma set_Exists_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X :
set_Exists P X → set_Exists Q X.
Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
(n : nat) (X : C) : list A :=
match n with
| 0 => []
| S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X)
end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A → Prop :=
| Forall_fresh_nil : Forall_fresh X []
| Forall_fresh_cons x xs :
x ∉ xs → x ∉ X → Forall_fresh X xs → Forall_fresh X (x :: xs).
Section fresh.
Context `{FreshSpec A C}.
Global Instance fresh_proper: Proper ((≡) ==> (=)) fresh.
Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
Global Instance fresh_list_proper: Proper ((=) ==> (≡) ==> (=)) fresh_list.
Proof.
intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
apply IH. by rewrite E.
Qed.
Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs → NoDup xs.
Proof. induction 1; by constructor. Qed.
Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs → x ∈ xs → x ∉ X.
Proof.
intros HX; revert x; rewrite <-Forall_forall.
by induction HX; constructor.
Qed.
Lemma Forall_fresh_alt X xs :
Forall_fresh X xs ↔ NoDup xs ∧ ∀ x, x ∈ xs → x ∉ X.
Proof.
split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
rewrite <-Forall_forall.
intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
Qed.
Lemma Forall_fresh_subseteq X Y xs :
Forall_fresh X xs → Y ⊆ X → Forall_fresh Y xs.
Proof. rewrite !Forall_fresh_alt; esolve_elem_of. Qed.
Lemma fresh_list_length n X : length (fresh_list n X) = n.
Proof. revert X. induction n; simpl; auto. Qed.
Lemma fresh_list_is_fresh n X x : x ∈ fresh_list n X → x ∉ X.
Proof.
revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
apply IH in Hin; solve_elem_of.
Qed.
Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
Proof.
revert X. induction n; simpl; constructor; auto.
intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
Qed.
Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
Proof.
rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
Qed.
End fresh.
(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
Context `{CollectionMonad M}.
Global Instance collection_fmap_proper {A B} :
Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B).
Proof. intros f g ? X Y [??]; split; esolve_elem_of. Qed.
Global Instance collection_bind_proper {A B} :
Proper (((=) ==> (≡)) ==> (≡) ==> (≡)) (@mbind M _ A B).
Proof. unfold respectful; intros f g Hfg X Y [??]; split; esolve_elem_of. Qed.
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
Global Instance collection_join_proper {A} :
Proper ((≡) ==> (≡)) (@mjoin M _ A).
Proof. intros X Y [??]; split; esolve_elem_of. Qed.
Lemma collection_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x.
Proof. esolve_elem_of. Qed.
Lemma collection_guard_True {A} `{Decision P} (X : M A) : P → guard P; X ≡ X.
Proof. esolve_elem_of. Qed.
Lemma collection_fmap_compose {A B C} (f : A → B) (g : B → C) X :
g ∘ f <$> X ≡ g <$> (f <$> X).
Proof. esolve_elem_of. Qed.
Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) :
y ∈ f <$> X → ∃ x, y = f x ∧ x ∈ X.
Proof. esolve_elem_of. Qed.
Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) :
x ∈ X → f x ∈ f <$> X.
Proof. esolve_elem_of. Qed.
Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) :
x ∈ X → y = f x → y ∈ f <$> X.
Proof. esolve_elem_of. Qed.
Lemma elem_of_mapM {A B} (f : A → M B) l k :
l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k.
Proof.
split.
* revert l. induction k; esolve_elem_of.
* induction 1; esolve_elem_of.
Qed.
Lemma collection_mapM_length {A B} (f : A → M B) l k :
l ∈ mapM f k → length l = length k.
Proof. revert l; induction k; esolve_elem_of. Qed.
Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k :
Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l.
Proof.
intros Hl. revert k. induction Hl; simpl; intros;
decompose_elem_of; f_equal'; auto.
Qed.
Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k :
l ∈ mapM f k → Forall (λ x, ∀ y, y ∈ f x → P y) k → Forall P l.
Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B) (P: B → C → Prop) l1 l2 k :
l1 ∈ mapM f k → Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 →
Forall2 P l1 l2.
Proof.
rewrite elem_of_mapM. intros Hl1. revert l2.
induction Hl1; inversion_clear 1; constructor; auto.
Qed.
End collection_monad.