Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
83cfef45
Commit
83cfef45
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Notion of finiteness of a collection.
parent
e7d2b424
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
prelude/collections.v
+30
-0
30 additions, 0 deletions
prelude/collections.v
prelude/fin_collections.v
+13
-11
13 additions, 11 deletions
prelude/fin_collections.v
with
43 additions
and
11 deletions
prelude/collections.v
+
30
−
0
View file @
83cfef45
...
@@ -590,3 +590,33 @@ Section collection_monad.
...
@@ -590,3 +590,33 @@ Section collection_monad.
induction
Hl1
;
inversion_clear
1
;
constructor
;
auto
.
induction
Hl1
;
inversion_clear
1
;
constructor
;
auto
.
Qed
.
Qed
.
End
collection_monad
.
End
collection_monad
.
(** Finite collections *)
Definition
set_finite
`{
ElemOf
A
B
}
(
X
:
B
)
:=
∃
l
:
list
A
,
∀
x
,
x
∈
X
→
x
∈
l
.
Section
finite
.
Context
`{
SimpleCollection
A
B
}
.
Lemma
empty_finite
:
set_finite
∅.
Proof
.
by
exists
[];
intros
?;
rewrite
elem_of_empty
.
Qed
.
Lemma
singleton_finite
(
x
:
A
)
:
set_finite
{[
x
]}
.
Proof
.
exists
[
x
];
intros
y
->/
elem_of_singleton
;
left
.
Qed
.
Lemma
union_finite
X
Y
:
set_finite
X
→
set_finite
Y
→
set_finite
(
X
∪
Y
)
.
Proof
.
intros
[
lX
?]
[
lY
?];
exists
(
lX
++
lY
);
intros
x
.
rewrite
elem_of_union
,
elem_of_app
;
naive_solver
.
Qed
.
Lemma
union_finite_inv_l
X
Y
:
set_finite
(
X
∪
Y
)
→
set_finite
X
.
Proof
.
intros
[
l
?];
exists
l
;
esolve_elem_of
.
Qed
.
Lemma
union_finite_inv_r
X
Y
:
set_finite
(
X
∪
Y
)
→
set_finite
Y
.
Proof
.
intros
[
l
?];
exists
l
;
esolve_elem_of
.
Qed
.
End
finite
.
Section
more_finite
.
Context
`{
Collection
A
B
}
.
Lemma
intersection_finite_l
X
Y
:
set_finite
X
→
set_finite
(
X
∩
Y
)
.
Proof
.
intros
[
l
?];
exists
l
;
intros
x
[??]
/
elem_of_intersection
;
auto
.
Qed
.
Lemma
intersection_finite_r
X
Y
:
set_finite
Y
→
set_finite
(
X
∩
Y
)
.
Proof
.
intros
[
l
?];
exists
l
;
intros
x
[??]
/
elem_of_intersection
;
auto
.
Qed
.
Lemma
difference_finite
X
Y
:
set_finite
X
→
set_finite
(
X
∖
Y
)
.
Proof
.
intros
[
l
?];
exists
l
;
intros
x
[??]
/
elem_of_difference
;
auto
.
Qed
.
End
more_finite
.
This diff is collapsed.
Click to expand it.
prelude/fin_collections.v
+
13
−
11
View file @
83cfef45
...
@@ -14,6 +14,8 @@ Section fin_collection.
...
@@ -14,6 +14,8 @@ Section fin_collection.
Context
`{
FinCollection
A
C
}
.
Context
`{
FinCollection
A
C
}
.
Implicit
Types
X
Y
:
C
.
Implicit
Types
X
Y
:
C
.
Lemma
fin_collection_finite
X
:
set_finite
X
.
Proof
.
by
exists
(
elements
X
);
intros
;
rewrite
elem_of_elements
.
Qed
.
Global
Instance
elements_proper
:
Proper
((
≡
)
==>
(
≡
ₚ
))
(
elements
(
C
:=
C
))
.
Global
Instance
elements_proper
:
Proper
((
≡
)
==>
(
≡
ₚ
))
(
elements
(
C
:=
C
))
.
Proof
.
Proof
.
intros
??
E
.
apply
NoDup_Permutation
.
intros
??
E
.
apply
NoDup_Permutation
.
...
@@ -26,16 +28,16 @@ Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
...
@@ -26,16 +28,16 @@ Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
Lemma
size_empty
:
size
(
∅
:
C
)
=
0
.
Lemma
size_empty
:
size
(
∅
:
C
)
=
0
.
Proof
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
unfold
size
,
collection_size
.
simpl
.
rewrite
(
elem_of_nil_inv
(
elements
∅
));
[
done
|]
.
rewrite
(
elem_of_nil_inv
(
elements
∅
));
[
done
|
intro
]
.
intro
.
rewrite
elem_of_elements
.
solve_elem_of
.
rewrite
elem_of_elements
,
elem_of_empty
;
auto
.
Qed
.
Qed
.
Lemma
size_empty_inv
(
X
:
C
)
:
size
X
=
0
→
X
≡
∅.
Lemma
size_empty_inv
(
X
:
C
)
:
size
X
=
0
→
X
≡
∅.
Proof
.
Proof
.
intros
.
apply
equiv_empty
.
intro
.
rewrite
<-
elem_of_elements
.
intros
;
apply
equiv_empty
;
intro
s
x
;
rewrite
<-
elem_of_elements
.
rewrite
(
nil_length_inv
(
elements
X
))
.
by
rewrite
elem_of_nil
.
done
.
by
rewrite
(
nil_length_inv
(
elements
X
))
,
?
elem_of_nil
.
Qed
.
Qed
.
Lemma
size_empty_iff
(
X
:
C
)
:
size
X
=
0
↔
X
≡
∅.
Lemma
size_empty_iff
(
X
:
C
)
:
size
X
=
0
↔
X
≡
∅.
Proof
.
split
.
apply
size_empty_inv
.
intros
E
.
by
rewrite
E
,
size_empty
.
Qed
.
Proof
.
split
.
apply
size_empty_inv
.
by
intros
->
;
rewrite
size_empty
.
Qed
.
Lemma
size_non_empty_iff
(
X
:
C
)
:
size
X
≠
0
↔
X
≢
∅.
Lemma
size_non_empty_iff
(
X
:
C
)
:
size
X
≠
0
↔
X
≢
∅.
Proof
.
by
rewrite
size_empty_iff
.
Qed
.
Proof
.
by
rewrite
size_empty_iff
.
Qed
.
Lemma
size_singleton
(
x
:
A
)
:
size
{[
x
]}
=
1
.
Lemma
size_singleton
(
x
:
A
)
:
size
{[
x
]}
=
1
.
...
@@ -44,19 +46,19 @@ Proof.
...
@@ -44,19 +46,19 @@ Proof.
apply
Permutation_length
,
NoDup_Permutation
.
apply
Permutation_length
,
NoDup_Permutation
.
*
apply
NoDup_elements
.
*
apply
NoDup_elements
.
*
apply
NoDup_singleton
.
*
apply
NoDup_singleton
.
*
intros
.
by
rewrite
elem_of_elements
,
*
intros
y
.
elem_of_singleton
,
elem_of_list_singleton
.
by
rewrite
elem_of_elements
,
elem_of_singleton
,
elem_of_list_singleton
.
Qed
.
Qed
.
Lemma
size_singleton_inv
X
x
y
:
size
X
=
1
→
x
∈
X
→
y
∈
X
→
x
=
y
.
Lemma
size_singleton_inv
X
x
y
:
size
X
=
1
→
x
∈
X
→
y
∈
X
→
x
=
y
.
Proof
.
Proof
.
unfold
size
,
collection_size
.
simpl
.
rewrite
<-!
elem_of_elements
.
unfold
size
,
collection_size
.
simpl
.
rewrite
<-!
elem_of_elements
.
generalize
(
elements
X
)
.
intros
[|?
l
];
intro
;
simplify_equality'
.
generalize
(
elements
X
)
.
intros
[|?
l
];
intro
;
simplify_equality'
.
rewrite
(
nil_length_inv
l
),
!
elem_of_list_singleton
by
done
.
congruence
.
rewrite
(
nil_length_inv
l
),
!
elem_of_list_singleton
by
done
;
congruence
.
Qed
.
Qed
.
Lemma
collection_choose_or_empty
X
:
(
∃
x
,
x
∈
X
)
∨
X
≡
∅.
Lemma
collection_choose_or_empty
X
:
(
∃
x
,
x
∈
X
)
∨
X
≡
∅.
Proof
.
Proof
.
destruct
(
elements
X
)
as
[|
x
l
]
eqn
:
HX
;
[
right
|
left
]
.
destruct
(
elements
X
)
as
[|
x
l
]
eqn
:
HX
;
[
right
|
left
]
.
*
apply
equiv_empty
.
intros
x
.
by
rewrite
<-
elem_of_elements
,
HX
,
elem_of_nil
.
*
apply
equiv_empty
;
intros
x
.
by
rewrite
<-
elem_of_elements
,
HX
,
elem_of_nil
.
*
exists
x
.
rewrite
<-
elem_of_elements
,
HX
.
by
left
.
*
exists
x
.
rewrite
<-
elem_of_elements
,
HX
.
by
left
.
Qed
.
Qed
.
Lemma
collection_choose
X
:
X
≢
∅
→
∃
x
,
x
∈
X
.
Lemma
collection_choose
X
:
X
≢
∅
→
∃
x
,
x
∈
X
.
...
@@ -81,8 +83,8 @@ Proof.
...
@@ -81,8 +83,8 @@ Proof.
apply
Permutation_length
,
NoDup_Permutation
.
apply
Permutation_length
,
NoDup_Permutation
.
*
apply
NoDup_elements
.
*
apply
NoDup_elements
.
*
apply
NoDup_app
;
repeat
split
;
try
apply
NoDup_elements
.
*
apply
NoDup_app
;
repeat
split
;
try
apply
NoDup_elements
.
intros
x
.
rewrite
!
elem_of_elements
.
esolve_elem_of
.
intros
x
;
rewrite
!
elem_of_elements
;
esolve_elem_of
.
*
intros
.
rewrite
elem_of_app
,
!
elem_of_elements
.
solve_
elem_of
.
*
intros
.
by
rewrite
elem_of_app
,
!
elem_of_elements
,
elem_of
_union
.
Qed
.
Qed
.
Instance
elem_of_dec_slow
(
x
:
A
)
(
X
:
C
)
:
Decision
(
x
∈
X
)
|
100
.
Instance
elem_of_dec_slow
(
x
:
A
)
(
X
:
C
)
:
Decision
(
x
∈
X
)
|
100
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment