Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
dbbda8cb
Commit
dbbda8cb
authored
10 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Prove that lockset ⊆ dom memory.
parent
7f9c5994
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/base.v
+4
-0
4 additions, 0 deletions
theories/base.v
theories/collections.v
+4
-0
4 additions, 0 deletions
theories/collections.v
theories/numbers.v
+5
-1
5 additions, 1 deletion
theories/numbers.v
with
13 additions
and
1 deletion
theories/base.v
+
4
−
0
View file @
dbbda8cb
...
@@ -815,6 +815,10 @@ Section prod_relation.
...
@@ -815,6 +815,10 @@ Section prod_relation.
End
prod_relation
.
End
prod_relation
.
(** ** Other *)
(** ** Other *)
Lemma
and_wlog_l
(
P
Q
:
Prop
)
:
(
Q
→
P
)
→
Q
→
(
P
∧
Q
)
.
Proof
.
tauto
.
Qed
.
Lemma
and_wlog_r
(
P
Q
:
Prop
)
:
P
→
(
P
→
Q
)
→
(
P
∧
Q
)
.
Proof
.
tauto
.
Qed
.
Instance
:
∀
A
B
(
x
:
B
),
Commutative
(
=
)
(
λ
_
_
:
A
,
x
)
.
Instance
:
∀
A
B
(
x
:
B
),
Commutative
(
=
)
(
λ
_
_
:
A
,
x
)
.
Proof
.
red
.
trivial
.
Qed
.
Proof
.
red
.
trivial
.
Qed
.
Instance
:
∀
A
(
x
:
A
),
Associative
(
=
)
(
λ
_
_
:
A
,
x
)
.
Instance
:
∀
A
(
x
:
A
),
Associative
(
=
)
(
λ
_
_
:
A
,
x
)
.
...
...
This diff is collapsed.
Click to expand it.
theories/collections.v
+
4
−
0
View file @
dbbda8cb
...
@@ -35,6 +35,10 @@ Section simple_collection.
...
@@ -35,6 +35,10 @@ Section simple_collection.
Qed
.
Qed
.
Lemma
collection_positive_l_alt
X
Y
:
X
≢
∅
→
X
∪
Y
≢
∅.
Lemma
collection_positive_l_alt
X
Y
:
X
≢
∅
→
X
∪
Y
≢
∅.
Proof
.
eauto
using
collection_positive_l
.
Qed
.
Proof
.
eauto
using
collection_positive_l
.
Qed
.
Lemma
elem_of_singleton_1
x
y
:
x
∈
{[
y
]}
→
x
=
y
.
Proof
.
by
rewrite
elem_of_singleton
.
Qed
.
Lemma
elem_of_singleton_2
x
y
:
x
=
y
→
x
∈
{[
y
]}
.
Proof
.
by
rewrite
elem_of_singleton
.
Qed
.
Lemma
elem_of_subseteq_singleton
x
X
:
x
∈
X
↔
{[
x
]}
⊆
X
.
Lemma
elem_of_subseteq_singleton
x
X
:
x
∈
X
↔
{[
x
]}
⊆
X
.
Proof
.
Proof
.
split
.
split
.
...
...
This diff is collapsed.
Click to expand it.
theories/numbers.v
+
5
−
1
View file @
dbbda8cb
...
@@ -264,7 +264,11 @@ Arguments Z.modulo _ _ : simpl never.
...
@@ -264,7 +264,11 @@ Arguments Z.modulo _ _ : simpl never.
Arguments
Z
.
quot
_
_
:
simpl
never
.
Arguments
Z
.
quot
_
_
:
simpl
never
.
Arguments
Z
.
rem
_
_
:
simpl
never
.
Arguments
Z
.
rem
_
_
:
simpl
never
.
Lemma
Z_mod_pos
a
b
:
0
<
b
→
0
≤
a
`
mod
`
b
.
Lemma
Z_to_nat_neq_0_pos
x
:
Z
.
to_nat
x
≠
0
%
nat
→
0
<
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
Z_to_nat_neq_0_nonneg
x
:
Z
.
to_nat
x
≠
0
%
nat
→
0
≤
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
Z_mod_pos
x
y
:
0
<
y
→
0
≤
x
`
mod
`
y
.
Proof
.
apply
Z
.
mod_pos_bound
.
Qed
.
Proof
.
apply
Z
.
mod_pos_bound
.
Qed
.
Hint
Resolve
Z
.
lt_le_incl
:
zpos
.
Hint
Resolve
Z
.
lt_le_incl
:
zpos
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment