Newer
Older
From Coq.QArith Require Import QArith_base Qcanon.
From stdpp Require Export list numbers list_numbers fin.
Local Open Scope positive.
Class Countable A `{EqDecision A} := {
encode : A → positive;
decode : positive → option A;
decode_encode x : decode (encode x) = Some x
}.
Robbert Krebbers
committed
Hint Mode Countable ! - : typeclass_instances.
Arguments encode : simpl never.
Arguments decode : simpl never.
Instance encode_inj `{Countable A} : Inj (=) (=) (encode (A:=A)).
intros x y Hxy; apply (inj Some).
by rewrite <-(decode_encode x), Hxy, decode_encode.
Qed.
Definition encode_nat `{Countable A} (x : A) : nat :=
pred (Pos.to_nat (encode x)).
Definition decode_nat `{Countable A} (i : nat) : option A :=
decode (Pos.of_nat (S i)).
Instance encode_nat_inj `{Countable A} : Inj (=) (=) (encode_nat (A:=A)).
Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_nat `{Countable A} (x : A) : decode_nat (encode_nat x) = Some x.
Proof.
pose proof (Pos2Nat.is_pos (encode x)).
unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia.
by rewrite Pos2Nat.id, decode_encode.
Qed.
Definition encode_Z `{Countable A} (x : A) : Z :=
Zpos (encode x).
Definition decode_Z `{Countable A} (i : Z) : option A :=
match i with Zpos i => decode i | _ => None end.
Instance encode_Z_inj `{Countable A} : Inj (=) (=) (encode_Z (A:=A)).
Proof. unfold encode_Z; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_Z `{Countable A} (x : A) : decode_Z (encode_Z x) = Some x.
Proof. apply decode_encode. Qed.

Ralf Jung
committed
Context `{Countable A} (P : A → Prop).
Inductive choose_step: relation positive :=
| choose_step_None {p} : decode (A:=A) p = None → choose_step (Pos.succ p) p
Robbert Krebbers
committed
| choose_step_Some {p} {x : A} :
decode p = Some x → ¬P x → choose_step (Pos.succ p) p.
Lemma choose_step_acc : (∃ x, P x) → Acc choose_step 1%positive.
Proof.
intros [x Hx]. cut (∀ i p,
i ≤ encode x → 1 + encode x = p + i → Acc choose_step p).
{ intros help. by apply (help (encode x)). }
intros i. induction i as [|i IH] using Pos.peano_ind; intros p ??.
{ constructor. intros j. assert (p = encode x) by lia; subst.
inversion 1 as [? Hd|?? Hd]; subst;
rewrite decode_encode in Hd; congruence. }
constructor. intros j.
inversion 1 as [? Hd|? y Hd]; subst; auto with lia.
Qed.

Ralf Jung
committed
Context `{∀ x, Decision (P x)}.
Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
match Some_dec (decode i) with
| inleft (x↾Hx) =>
match decide (P x) with
| left _ => x | right H => choose_go (Acc_inv acc (choose_step_Some Hx H))
end
| inright H => choose_go (Acc_inv acc (choose_step_None H))
end.
Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc).
Proof. destruct acc; simpl. repeat case_match; auto. Qed.
Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) :
choose_go acc1 = choose_go acc2.
Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed.
Definition choose (H: ∃ x, P x) : A := choose_go (choose_step_acc H).
Definition choose_correct (H: ∃ x, P x) : P (choose H) := choose_go_correct _.
Definition choose_pi (H1 H2 : ∃ x, P x) :
choose H1 = choose H2 := choose_go_pi _ _.
Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA.
End choice.
Lemma surj_cancel `{Countable A} `{EqDecision B}
(f : A → B) `{!Surj (=) f} : { g : B → A & Cancel (=) f g }.
exists (λ y, choose (λ x, f x = y) (surj f y)).
intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
(** ** Injection *)
Context `{Countable A, EqDecision B}.
Context (f : B → A) (g : A → option B) (fg : ∀ x, g (f x) = Some x).
Program Instance inj_countable : Countable B :=
{| encode y := encode (f y); decode p := x ← decode p; g x |}.
Next Obligation. intros y; simpl; rewrite decode_encode; eauto. Qed.
Section inj_countable'.
Context `{Countable A, EqDecision B}.
Context (f : B → A) (g : A → B) (fg : ∀ x, g (f x) = x).
Program Instance inj_countable' : Countable B := inj_countable f (Some ∘ g) _.
Next Obligation. intros x. by f_equal/=. Qed.
End inj_countable'.
(** ** Empty *)
Program Instance Empty_set_countable : Countable Empty_set :=
{| encode u := 1; decode p := None |}.
Next Obligation. by intros []. Qed.
(** ** Unit *)
Program Instance unit_countable : Countable unit :=
{| encode u := 1; decode p := Some () |}.
Next Obligation. by intros []. Qed.
(** ** Bool *)
Program Instance bool_countable : Countable bool := {|
encode b := if b then 1 else 2;
decode p := Some match p return bool with 1 => true | _ => false end
|}.
Next Obligation. by intros []. Qed.
Program Instance option_countable `{Countable A} : Countable (option A) := {|
encode o := match o with None => 1 | Some x => Pos.succ (encode x) end;
decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p)
|}.
Next Obligation.
intros ??? [x|]; simpl; repeat case_decide; auto with lia.
by rewrite Pos.pred_succ, decode_encode.
Qed.
Program Instance sum_countable `{Countable A} `{Countable B} :
Countable (A + B)%type := {|
encode xy :=
match xy with inl x => (encode x)~0 | inr y => (encode y)~1 end;
decode p :=
match p with
| 1 => None | p~0 => inl <$> decode p | p~1 => inr <$> decode p
end
|}.
Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed.
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Fixpoint prod_encode_fst (p : positive) : positive :=
match p with
| 1 => 1
| p~0 => (prod_encode_fst p)~0~0
| p~1 => (prod_encode_fst p)~0~1
end.
Fixpoint prod_encode_snd (p : positive) : positive :=
match p with
| 1 => 1~0
| p~0 => (prod_encode_snd p)~0~0
| p~1 => (prod_encode_snd p)~1~0
end.
Fixpoint prod_encode (p q : positive) : positive :=
match p, q with
| 1, 1 => 1~1
| p~0, 1 => (prod_encode_fst p)~1~0
| p~1, 1 => (prod_encode_fst p)~1~1
| 1, q~0 => (prod_encode_snd q)~0~1
| 1, q~1 => (prod_encode_snd q)~1~1
| p~0, q~0 => (prod_encode p q)~0~0
| p~0, q~1 => (prod_encode p q)~1~0
| p~1, q~0 => (prod_encode p q)~0~1
| p~1, q~1 => (prod_encode p q)~1~1
end.
Fixpoint prod_decode_fst (p : positive) : option positive :=
match p with
| p~0~0 => (~0) <$> prod_decode_fst p
| p~0~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
| p~1~0 => (~0) <$> prod_decode_fst p
| p~1~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
| 1~0 => None
| 1~1 => Some 1
| 1 => Some 1
end.
Fixpoint prod_decode_snd (p : positive) : option positive :=
match p with
| p~0~0 => (~0) <$> prod_decode_snd p
| p~0~1 => (~0) <$> prod_decode_snd p
| p~1~0 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
| p~1~1 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
| 1~0 => Some 1
| 1~1 => Some 1
| 1 => None
end.
Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p.
Proof.
assert (∀ p, prod_decode_fst (prod_encode_fst p) = Some p).
{ intros p'. by induction p'; simplify_option_eq. }
assert (∀ p, prod_decode_fst (prod_encode_snd p) = None).
{ intros p'. by induction p'; simplify_option_eq. }
revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q.
Proof.
assert (∀ p, prod_decode_snd (prod_encode_snd p) = Some p).
{ intros p'. by induction p'; simplify_option_eq. }
assert (∀ p, prod_decode_snd (prod_encode_fst p) = None).
{ intros p'. by induction p'; simplify_option_eq. }
revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Program Instance prod_countable `{Countable A} `{Countable B} :
Countable (A * B)%type := {|
encode xy := prod_encode (encode (xy.1)) (encode (xy.2));
decode p :=
x ← prod_decode_fst p ≫= decode;
y ← prod_decode_snd p ≫= decode; Some (x, y)
|}.
Next Obligation.
intros ?????? [x y]; simpl.
rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl.
by rewrite !decode_encode.
Global Program Instance list_countable `{Countable A} : Countable (list A) :=
{| encode xs := positives_flatten (encode <$> xs);
decode p := positives ← positives_unflatten p;
mapM decode positives; |}.
intros A EqA CA xs.
simpl.
rewrite positives_unflatten_flatten.
simpl.
apply (mapM_fmap_Some _ _ _ decode_encode).
Qed.
(** ** Numbers *)
Instance pos_countable : Countable positive :=
{| encode := id; decode := Some; decode_encode x := eq_refl |}.
Program Instance N_countable : Countable N := {|
encode x := match x with N0 => 1 | Npos p => Pos.succ p end;
decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p))
|}.
Next Obligation.
intros [|p]; simpl; [done|].
by rewrite decide_False, Pos.pred_succ by (by destruct p).
Qed.
Program Instance Z_countable : Countable Z := {|
encode x := match x with Z0 => 1 | Zpos p => p~0 | Zneg p => p~1 end;
decode p := Some match p with 1 => Z0 | p~0 => Zpos p | p~1 => Zneg p end
|}.
Next Obligation. by intros [|p|p]. Qed.
Program Instance nat_countable : Countable nat :=
{| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}.
by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id.
Program Instance Qc_countable : Countable Qc :=
inj_countable
(λ p : Qc, let 'Qcmake (x # y) _ := p return _ in (x,y))
(λ q : Z * positive, let '(x,y) := q return _ in Some (Q2Qc (x # y))) _.
Next Obligation.
intros [[x y] Hcan]. f_equal. apply Qc_is_canon. simpl. by rewrite Hcan.
Program Instance Qp_countable : Countable Qp :=
(λ p : Qc, guard (0 < p)%Qc as Hp; Some (mk_Qp p Hp)) _.
Next Obligation.
intros [p Hp]. unfold mguard, option_guard; simpl.
case_match; [|done]. f_equal. by apply Qp_eq.
Program Instance fin_countable n : Countable (fin n) :=
inj_countable
fin_to_nat
(λ m : nat, guard (m < n)%nat as Hm; Some (nat_to_fin Hm)) _.
Next Obligation.
intros n i; simplify_option_eq.
- by rewrite nat_to_fin_to_nat.
- by pose proof (fin_to_nat_lt i).
Qed.
Inductive gen_tree (T : Type) : Type :=
| GenLeaf : T → gen_tree T
| GenNode : nat → list (gen_tree T) → gen_tree T.
Arguments GenLeaf {_} _ : assert.
Arguments GenNode {_} _ _ : assert.
Instance gen_tree_dec `{EqDecision T} : EqDecision (gen_tree T).
Proof.
refine (
Robbert Krebbers
committed
fix go t1 t2 := let _ : EqDecision _ := @go in
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
match t1, t2 with
| GenLeaf x1, GenLeaf x2 => cast_if (decide (x1 = x2))
| GenNode n1 ts1, GenNode n2 ts2 =>
cast_if_and (decide (n1 = n2)) (decide (ts1 = ts2))
| _, _ => right _
end); abstract congruence.
Defined.
Fixpoint gen_tree_to_list {T} (t : gen_tree T) : list (nat * nat + T) :=
match t with
| GenLeaf x => [inr x]
| GenNode n ts => (ts ≫= gen_tree_to_list) ++ [inl (length ts, n)]
end.
Fixpoint gen_tree_of_list {T}
(k : list (gen_tree T)) (l : list (nat * nat + T)) : option (gen_tree T) :=
match l with
| [] => head k
| inr x :: l => gen_tree_of_list (GenLeaf x :: k) l
| inl (len,n) :: l =>
gen_tree_of_list (GenNode n (reverse (take len k)) :: drop len k) l
end.
Lemma gen_tree_of_to_list {T} k l (t : gen_tree T) :
gen_tree_of_list k (gen_tree_to_list t ++ l) = gen_tree_of_list (t :: k) l.
Proof.
revert t k l; fix FIX 1; intros [|n ts] k l; simpl; auto.
trans (gen_tree_of_list (reverse ts ++ k) ([inl (length ts, n)] ++ l)).
- rewrite <-(assoc_L _). revert k. generalize ([inl (length ts, n)] ++ l).
induction ts as [|t ts'' IH]; intros k ts'''; csimpl; auto.
rewrite reverse_cons, <-!(assoc_L _), FIX; simpl; auto.
- simpl. by rewrite take_app_alt, drop_app_alt, reverse_involutive
by (by rewrite reverse_length).
Qed.
Program Instance gen_tree_countable `{Countable T} : Countable (gen_tree T) :=
inj_countable gen_tree_to_list (gen_tree_of_list []) _.
Next Obligation.
intros T ?? t.
by rewrite <-(right_id_L [] _ (gen_tree_to_list _)), gen_tree_of_to_list.
Qed.