Newer
Older
From iris.proofmode Require Export classes.
From iris.algebra Require Import gmap.
From iris.base_logic Require Import big_op tactics.
Set Default Proof Using "Type".
Import uPred.
Section classes.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.
(* FromAssumption *)
Global Instance from_assumption_exact p P : FromAssumption p P P | 0.
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
Global Instance from_assumption_False p P : FromAssumption p False P | 1.
Proof. destruct p; rewrite /FromAssumption /= ?always_pure; apply False_elim. Qed.
Global Instance from_assumption_always_r P Q :
FromAssumption true P Q → FromAssumption true P (□ Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
Global Instance from_assumption_always_l p P Q :
FromAssumption p P Q → FromAssumption p (□ P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Global Instance from_assumption_later p P Q :
FromAssumption p P Q → FromAssumption p P (▷ Q)%I.
Proof. rewrite /FromAssumption=>->. apply later_intro. Qed.
Global Instance from_assumption_laterN n p P Q :
FromAssumption p P Q → FromAssumption p P (▷^n Q)%I.
Proof. rewrite /FromAssumption=>->. apply laterN_intro. Qed.
Global Instance from_assumption_bupd p P Q :
FromAssumption p P Q → FromAssumption p P (|==> Q)%I.
Proof. rewrite /FromAssumption=>->. apply bupd_intro. Qed.
Global Instance from_assumption_forall {A} p (Φ : A → uPred M) Q x :
FromAssumption p (Φ x) Q → FromAssumption p (∀ x, Φ x) Q.
Proof. rewrite /FromAssumption=> <-. by rewrite forall_elim. Qed.
(* IntoPure *)
Global Instance into_pure_pure φ : @IntoPure M ⌜φ⌝ φ.
Proof. done. Qed.
Global Instance into_pure_eq {A : ofeT} (a b : A) :
Timeless a → @IntoPure M (a ≡ b) (a ≡ b).
Proof. intros. by rewrite /IntoPure timeless_eq. Qed.
Global Instance into_pure_cmra_valid `{CMRADiscrete A} (a : A) :
@IntoPure M (✓ a) (✓ a).
Proof. by rewrite /IntoPure discrete_valid. Qed.
Proof. rewrite /IntoPure pure_and. by intros -> ->. Qed.
Global Instance into_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
Proof. rewrite /IntoPure sep_and pure_and. by intros -> ->. Qed.
Proof. rewrite /IntoPure pure_or. by intros -> ->. Qed.
Global Instance into_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Global Instance into_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
Proof.
rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.
Global Instance into_pure_exist {X : Type} (Φ : X → uPred M) (φ : X → Prop) :
(∀ x, @IntoPure M (Φ x) (φ x)) → @IntoPure M (∃ x, Φ x) (∃ x, φ x).
Proof.
rewrite /IntoPure=>Hx. apply exist_elim=>x. rewrite Hx.
apply pure_elim'=>Hφ. apply pure_intro. eauto.
Qed.
Global Instance into_pure_forall {X : Type} (Φ : X → uPred M) (φ : X → Prop) :
(∀ x, @IntoPure M (Φ x) (φ x)) → @IntoPure M (∀ x, Φ x) (∀ x, φ x).
Proof.
rewrite /IntoPure=>Hx. rewrite -pure_forall_2. by setoid_rewrite Hx.
Qed.
(* FromPure *)
Global Instance from_pure_pure φ : @FromPure M ⌜φ⌝ φ.
Proof. done. Qed.
Global Instance from_pure_internal_eq {A : ofeT} (a b : A) :
@FromPure M (a ≡ b) (a ≡ b).
Proof.
rewrite /FromPure. eapply pure_elim; [done|]=> ->. apply internal_eq_refl'.
Qed.
Global Instance from_pure_cmra_valid {A : cmraT} (a : A) :
@FromPure M (✓ a) (✓ a).
Proof.
rewrite /FromPure. eapply pure_elim; [done|]=> ?.
rewrite -cmra_valid_intro //. auto with I.
Global Instance from_pure_bupd P φ : FromPure P φ → FromPure (|==> P) φ.
Proof. rewrite /FromPure=> ->. apply bupd_intro. Qed.
FromPure P1 φ1 → FromPure P2 φ2 → FromPure (P1 ∧ P2) (φ1 ∧ φ2).
Proof. rewrite /FromPure pure_and. by intros -> ->. Qed.
Global Instance from_pure_pure_sep (φ1 φ2 : Prop) P1 P2 :
FromPure P1 φ1 → FromPure P2 φ2 → FromPure (P1 ∗ P2) (φ1 ∧ φ2).
Proof. rewrite /FromPure pure_and always_and_sep_l. by intros -> ->. Qed.
FromPure P1 φ1 → FromPure P2 φ2 → FromPure (P1 ∨ P2) (φ1 ∨ φ2).
Proof. rewrite /FromPure pure_or. by intros -> ->. Qed.
Global Instance from_pure_pure_impl (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → FromPure P2 φ2 → FromPure (P1 → P2) (φ1 → φ2).
Proof. rewrite /FromPure /IntoPure pure_impl. by intros -> ->. Qed.
Global Instance from_pure_pure_wand (φ1 φ2 : Prop) P1 P2 :
IntoPure P1 φ1 → FromPure P2 φ2 → FromPure (P1 -∗ P2) (φ1 → φ2).
Proof.
rewrite /FromPure /IntoPure pure_impl always_impl_wand. by intros -> ->.
Qed.
Global Instance from_pure_exist {X : Type} (Φ : X → uPred M) (φ : X → Prop) :
(∀ x, @FromPure M (Φ x) (φ x)) → @FromPure M (∃ x, Φ x) (∃ x, φ x).
Proof.
rewrite /FromPure=>Hx. apply pure_elim'=>-[x ?]. rewrite -(exist_intro x).
rewrite -Hx. apply pure_intro. done.
Qed.
Global Instance from_pure_forall {X : Type} (Φ : X → uPred M) (φ : X → Prop) :
(∀ x, @FromPure M (Φ x) (φ x)) → @FromPure M (∀ x, Φ x) (∀ x, φ x).
Proof.
rewrite /FromPure=>Hx. apply forall_intro=>x. apply pure_elim'=>Hφ.
rewrite -Hx. apply pure_intro. done.
Qed.
(* IntoPersistentP *)
Global Instance into_persistentP_always_trans P Q :
IntoPersistentP P Q → IntoPersistentP (□ P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP (□ P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
PersistentP P → IntoPersistentP P P | 100.
Proof. done. Qed.
(* IntoLater *)
Global Instance into_laterN_later n P Q :
IntoLaterN n P Q → IntoLaterN' (S n) (▷ P) Q.
Proof. by rewrite /IntoLaterN' /IntoLaterN =>->. Qed.
Global Instance into_laterN_laterN n P : IntoLaterN' n (▷^n P) P.
Proof. done. Qed.
Global Instance into_laterN_laterN_plus n m P Q :
IntoLaterN m P Q → IntoLaterN' (n + m) (▷^n P) Q.
Proof. rewrite /IntoLaterN' /IntoLaterN=>->. by rewrite laterN_plus. Qed.
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
IntoLaterN' n P1 Q1 → IntoLaterN n P2 Q2 →
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_and. Qed.
Global Instance into_laterN_and_r n P P2 Q2 :
IntoLaterN' n P2 Q2 → IntoLaterN' n (P ∧ P2) (P ∧ Q2) | 11.
rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
IntoLaterN' n P1 Q1 → IntoLaterN n P2 Q2 →
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_or. Qed.
Global Instance into_laterN_or_r n P P2 Q2 :
rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
Qed.
Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
IntoLaterN' n P1 Q1 → IntoLaterN n P2 Q2 →
IntoLaterN' n (P1 ∗ P2) (Q1 ∗ Q2) | 10.
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_sep. Qed.
Global Instance into_laterN_sep_r n P P2 Q2 :
rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat → A → uPred M) (l: list A) :
(∀ x k, IntoLaterN' n (Φ k x) (Ψ k x)) →
IntoLaterN' n ([∗ list] k ↦ x ∈ l, Φ k x) ([∗ list] k ↦ x ∈ l, Ψ k x).
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_opL_commute. by apply big_sepL_mono.
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
(Φ Ψ : K → A → uPred M) (m : gmap K A) :
(∀ x k, IntoLaterN' n (Φ k x) (Ψ k x)) →
IntoLaterN' n ([∗ map] k ↦ x ∈ m, Φ k x) ([∗ map] k ↦ x ∈ m, Ψ k x).
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_opM_commute; by apply big_sepM_mono.
Global Instance into_laterN_big_sepS n `{Countable A}
(Φ Ψ : A → uPred M) (X : gset A) :
(∀ x, IntoLaterN' n (Φ x) (Ψ x)) →
IntoLaterN' n ([∗ set] x ∈ X, Φ x) ([∗ set] x ∈ X, Ψ x).
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_opS_commute; by apply big_sepS_mono.
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
(Φ Ψ : A → uPred M) (X : gmultiset A) :
(∀ x, IntoLaterN' n (Φ x) (Ψ x)) →
IntoLaterN' n ([∗ mset] x ∈ X, Φ x) ([∗ mset] x ∈ X, Ψ x).
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_opMS_commute; by apply big_sepMS_mono.
Qed.
(* FromLater *)
Global Instance from_laterN_later P :FromLaterN 1 (▷ P) P | 0.
Proof. done. Qed.
Global Instance from_laterN_laterN n P : FromLaterN n (▷^n P) P | 0.
Proof. done. Qed.
(* The instances below are used when stripping a specific number of laters, or
to balance laters in different branches of ∧, ∨ and ∗. *)
Global Instance from_laterN_0 P : FromLaterN 0 P P | 100. (* fallthrough *)
Proof. done. Qed.
Global Instance from_laterN_later_S n P Q :
FromLaterN n P Q → FromLaterN (S n) (▷ P) Q.
Proof. by rewrite /FromLaterN=><-. Qed.
Global Instance from_laterN_later_plus n m P Q :
FromLaterN m P Q → FromLaterN (n + m) (▷^n P) Q.
Proof. rewrite /FromLaterN=><-. by rewrite laterN_plus. Qed.
Global Instance from_later_and n P1 P2 Q1 Q2 :
FromLaterN n P1 Q1 → FromLaterN n P2 Q2 → FromLaterN n (P1 ∧ P2) (Q1 ∧ Q2).
Proof. intros ??; red. by rewrite laterN_and; apply and_mono. Qed.
Global Instance from_later_or n P1 P2 Q1 Q2 :
FromLaterN n P1 Q1 → FromLaterN n P2 Q2 → FromLaterN n (P1 ∨ P2) (Q1 ∨ Q2).
Proof. intros ??; red. by rewrite laterN_or; apply or_mono. Qed.
Global Instance from_later_sep n P1 P2 Q1 Q2 :
FromLaterN n P1 Q1 → FromLaterN n P2 Q2 → FromLaterN n (P1 ∗ P2) (Q1 ∗ Q2).
Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed.
Global Instance from_later_always n P Q :
FromLaterN n P Q → FromLaterN n (□ P) (□ Q).
Proof. by rewrite /FromLaterN -always_laterN=> ->. Qed.
Global Instance from_later_forall {A} n (Φ Ψ : A → uPred M) :
(∀ x, FromLaterN n (Φ x) (Ψ x)) → FromLaterN n (∀ x, Φ x) (∀ x, Ψ x).
Proof. rewrite /FromLaterN laterN_forall=> ?. by apply forall_mono. Qed.
Global Instance from_later_exist {A} n (Φ Ψ : A → uPred M) :
Inhabited A → (∀ x, FromLaterN n (Φ x) (Ψ x)) →
FromLaterN n (∃ x, Φ x) (∃ x, Ψ x).
Proof. intros ?. rewrite /FromLaterN laterN_exist=> ?. by apply exist_mono. Qed.
(* IntoWand *)
Global Instance wand_weaken_assumption P1 P2 Q :
FromAssumption false P2 P1 → WandWeaken P1 Q P2 Q | 0.
Proof. by rewrite /WandWeaken /FromAssumption /= =>->. Qed.
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
Global Instance wand_weaken_later P Q P' Q' :
WandWeaken P Q P' Q' → WandWeaken' P Q (▷ P') (▷ Q').
Proof.
rewrite /WandWeaken' /WandWeaken=> ->. by rewrite -later_wand -later_intro.
Qed.
Global Instance wand_weaken_laterN n P Q P' Q' :
WandWeaken P Q P' Q' → WandWeaken' P Q (▷^n P') (▷^n Q').
Proof.
rewrite /WandWeaken' /WandWeaken=> ->. by rewrite -laterN_wand -laterN_intro.
Qed.
Global Instance bupd_weaken_laterN P Q P' Q' :
WandWeaken P Q P' Q' → WandWeaken' P Q (|==> P') (|==> Q').
Proof.
rewrite /WandWeaken' /WandWeaken=> ->.
apply wand_intro_l. by rewrite bupd_wand_r.
Qed.
Global Instance into_wand_wand P P' Q Q' :
WandWeaken P Q P' Q' → IntoWand (P -∗ Q) P' Q'.
Proof. done. Qed.
Global Instance into_wand_impl P P' Q Q' :
WandWeaken P Q P' Q' → IntoWand (P → Q) P' Q'.
Proof. rewrite /WandWeaken /IntoWand /= => <-. apply impl_wand. Qed.
Global Instance into_wand_iff_l P P' Q Q' :
WandWeaken P Q P' Q' → IntoWand (P ↔ Q) P' Q'.
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P P' Q Q' :
WandWeaken Q P Q' P' → IntoWand (P ↔ Q) Q' P'.
Proof. rewrite /WandWeaken /IntoWand=> <-. apply and_elim_r', impl_wand. Qed.
Global Instance into_wand_forall {A} (Φ : A → uPred M) P Q x :
IntoWand (Φ x) P Q → IntoWand (∀ x, Φ x) P Q.
Proof. rewrite /IntoWand=> <-. apply forall_elim. Qed.
Global Instance into_wand_always R P Q : IntoWand R P Q → IntoWand (□ R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
Global Instance into_wand_later R P Q :
IntoWand R P Q → IntoWand (▷ R) (▷ P) (▷ Q).
Proof. rewrite /IntoWand=> ->. by rewrite -later_wand. Qed.
Global Instance into_wand_laterN n R P Q :
IntoWand R P Q → IntoWand (▷^n R) (▷^n P) (▷^n Q).
Proof. rewrite /IntoWand=> ->. by rewrite -laterN_wand. Qed.
Global Instance into_wand_bupd R P Q :
rewrite /IntoWand=> ->. apply wand_intro_l. by rewrite bupd_sep wand_elim_r.
(* FromAnd *)
Global Instance from_and_and p P1 P2 : FromAnd p (P1 ∧ P2) P1 P2 | 100.
Proof. by apply mk_from_and_and. Qed.
Global Instance from_and_sep P1 P2 : FromAnd false (P1 ∗ P2) P1 P2 | 100.
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
PersistentP P1 → FromAnd true (P1 ∗ P2) P1 P2 | 9.
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
PersistentP P2 → FromAnd true (P1 ∗ P2) P1 P2 | 10.
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
Global Instance from_and_pure p φ ψ : @FromAnd M p ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_from_and_and. by rewrite pure_and. Qed.
Global Instance from_and_always p P Q1 Q2 :
FromAnd false P Q1 Q2 → FromAnd p (□ P) (□ Q1) (□ Q2).
Proof.
intros. apply mk_from_and_and.
by rewrite always_and_sep_l' -always_sep -(from_and _ P).
Qed.
Global Instance from_and_later p P Q1 Q2 :
FromAnd p P Q1 Q2 → FromAnd p (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /FromAnd=> <-. destruct p; by rewrite ?later_and ?later_sep. Qed.
Global Instance from_and_laterN p n P Q1 Q2 :
FromAnd p P Q1 Q2 → FromAnd p (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /FromAnd=> <-. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.
Global Instance from_sep_ownM (a b1 b2 : M) :
FromOp a b1 b2 →
FromAnd false (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /FromAnd -ownM_op from_op. Qed.
Global Instance from_sep_ownM_persistent (a b1 b2 : M) :
FromOp a b1 b2 → Or (Persistent b1) (Persistent b2) →
FromAnd true (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
intros ? Hper; apply mk_from_and_persistent; [destruct Hper; apply _|].
by rewrite -ownM_op from_op.
Qed.
Global Instance from_sep_bupd P Q1 Q2 :
FromAnd false P Q1 Q2 → FromAnd false (|==> P) (|==> Q1) (|==> Q2).
Proof. rewrite /FromAnd=><-. apply bupd_sep. Qed.
Global Instance from_and_big_sepL_cons {A} (Φ : nat → A → uPred M) x l :
FromAnd false ([∗ list] k ↦ y ∈ x :: l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l, Φ (S k) y).
Proof. by rewrite /FromAnd big_sepL_cons. Qed.
Global Instance from_and_big_sepL_cons_persistent {A} (Φ : nat → A → uPred M) x l :
PersistentP (Φ 0 x) →
FromAnd true ([∗ list] k ↦ y ∈ x :: l, Φ k y) (Φ 0 x) ([∗ list] k ↦ y ∈ l, Φ (S k) y).
Proof. intros. by rewrite /FromAnd big_opL_cons always_and_sep_l. Qed.
Global Instance from_and_big_sepL_app {A} (Φ : nat → A → uPred M) l1 l2 :
FromAnd false ([∗ list] k ↦ y ∈ l1 ++ l2, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. by rewrite /FromAnd big_opL_app. Qed.
Global Instance from_sep_big_sepL_app_persistent {A} (Φ : nat → A → uPred M) l1 l2 :
(∀ k y, PersistentP (Φ k y)) →
FromAnd true ([∗ list] k ↦ y ∈ l1 ++ l2, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. intros. by rewrite /FromAnd big_opL_app always_and_sep_l. Qed.
(* FromOp *)
Global Instance from_op_op {A : cmraT} (a b : A) : FromOp (a ⋅ b) a b.
Proof. by rewrite /FromOp. Qed.
(* TODO: Worst case there could be a lot of backtracking on these instances,
try to refactor. *)
Global Instance from_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
FromOp a b1 b2 → FromOp a' b1' b2' → FromOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance from_op_pair_persistent_l {A B : cmraT} (a : A) (a' b1' b2' : B) :
Persistent a → FromOp a' b1' b2' → FromOp (a,a') (a,b1') (a,b2').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
Global Instance from_op_pair_persistent_r {A B : cmraT} (a b1 b2 : A) (a' : B) :
Persistent a' → FromOp a b1 b2 → FromOp (a,a') (b1,a') (b2,a').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
Global Instance from_op_Some {A : cmraT} (a : A) b1 b2 :
FromOp a b1 b2 → FromOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.
(* IntoOp *)
Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a ⋅ b) a b.
Proof. by rewrite /IntoOp. Qed.
Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
IntoOp a b1 b2 → IntoOp a' b1' b2' →
IntoOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance into_op_pair_persistent_l {A B : cmraT} (a : A) (a' b1' b2' : B) :
Persistent a → IntoOp a' b1' b2' → IntoOp (a,a') (a,b1') (a,b2').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
Global Instance into_op_pair_persistent_r {A B : cmraT} (a b1 b2 : A) (a' : B) :
Persistent a' → IntoOp a b1 b2 → IntoOp (a,a') (b1,a') (b2,a').
Proof. constructor=> //=. by rewrite -persistent_dup. Qed.
Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 :
IntoOp a b1 b2 → IntoOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.
Robbert Krebbers
committed
(* IntoAnd *)
Global Instance into_and_sep p P Q : IntoAnd p (P ∗ Q) P Q.
Robbert Krebbers
committed
Proof. by apply mk_into_and_sep. Qed.
Global Instance into_and_ownM p (a b1 b2 : M) :
IntoOp a b1 b2 →
Robbert Krebbers
committed
IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. apply mk_into_and_sep. by rewrite (into_op a) ownM_op. Qed.
Robbert Krebbers
committed
Global Instance into_and_and P Q : IntoAnd true (P ∧ Q) P Q.
Robbert Krebbers
committed
Global Instance into_and_and_persistent_l P Q :
PersistentP P → IntoAnd false (P ∧ Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_l. Qed.
Global Instance into_and_and_persistent_r P Q :
PersistentP Q → IntoAnd false (P ∧ Q) P Q.
Proof. intros; by rewrite /IntoAnd /= always_and_sep_r. Qed.
Global Instance into_and_pure p φ ψ : @IntoAnd M p ⌜φ ∧ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. apply mk_into_and_sep. by rewrite pure_and always_and_sep_r. Qed.
Global Instance into_and_always p P Q1 Q2 :
IntoAnd true P Q1 Q2 → IntoAnd p (□ P) (□ Q1) (□ Q2).
Proof.
rewrite /IntoAnd=>->. destruct p; by rewrite ?always_and always_and_sep_r.
Qed.
Robbert Krebbers
committed
Global Instance into_and_later p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?later_and ?later_sep. Qed.
Global Instance into_and_laterN n p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /IntoAnd=>->. destruct p; by rewrite ?laterN_and ?laterN_sep. Qed.
Robbert Krebbers
committed
(* We use [IsCons] and [IsApp] to make sure that [frame_big_sepL_cons] and
[frame_big_sepL_app] cannot be applied repeatedly often when having
[ [∗ list] k ↦ x ∈ ?e, Φ k x] with [?e] an evar. *)
Global Instance into_and_big_sepL_cons {A} p (Φ : nat → A → uPred M) l x l' :
IsCons l x l' →
IntoAnd p ([∗ list] k ↦ y ∈ l, Φ k y)
(Φ 0 x) ([∗ list] k ↦ y ∈ l', Φ (S k) y).
Proof. rewrite /IsCons=>->. apply mk_into_and_sep. by rewrite big_sepL_cons. Qed.
Global Instance into_and_big_sepL_app {A} p (Φ : nat → A → uPred M) l l1 l2 :
IsApp l l1 l2 →
IntoAnd p ([∗ list] k ↦ y ∈ l, Φ k y)
([∗ list] k ↦ y ∈ l1, Φ k y) ([∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y).
Proof. rewrite /IsApp=>->. apply mk_into_and_sep. by rewrite big_sepL_app. Qed.
(* Frame *)
Global Instance frame_here p R : Frame p R R True.
Proof. by rewrite /Frame right_id always_if_elim. Qed.
Global Instance frame_here_pure p φ Q : FromPure Q φ → Frame p ⌜φ⌝ Q True.
Proof. rewrite /FromPure /Frame=> ->. by rewrite always_if_elim right_id. Qed.
Class MakeSep (P Q PQ : uPred M) := make_sep : P ∗ Q ⊣⊢ PQ.
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
Global Instance make_sep_default P Q : MakeSep P Q (P ∗ Q) | 100.
Proof. done. Qed.
Global Instance frame_sep_persistent_l R P1 P2 Q1 Q2 Q' :
Frame true R P1 Q1 → MaybeFrame true R P2 Q2 → MakeSep Q1 Q2 Q' →
Frame true R (P1 ∗ P2) Q' | 9.
Proof.
rewrite /Frame /MaybeFrame /MakeSep /= => <- <- <-.
rewrite {1}(always_sep_dup (□ R)). solve_sep_entails.
Qed.
Global Instance frame_sep_l R P1 P2 Q Q' :
Frame false R P1 Q → MakeSep Q P2 Q' → Frame false R (P1 ∗ P2) Q' | 9.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
Global Instance frame_sep_r p R P1 P2 Q Q' :
Frame p R P2 Q → MakeSep P1 Q Q' → Frame p R (P1 ∗ P2) Q' | 10.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc -(comm _ P1) assoc. Qed.
Global Instance frame_big_sepL_cons {A} p (Φ : nat → A → uPred M) R Q l x l' :
IsCons l x l' →
Frame p R (Φ 0 x ∗ [∗ list] k ↦ y ∈ l', Φ (S k) y) Q →
Frame p R ([∗ list] k ↦ y ∈ l, Φ k y) Q.
Proof. rewrite /IsCons=>->. by rewrite /Frame big_sepL_cons. Qed.
Global Instance frame_big_sepL_app {A} p (Φ : nat → A → uPred M) R Q l l1 l2 :
IsApp l l1 l2 →
Frame p R (([∗ list] k ↦ y ∈ l1, Φ k y) ∗
[∗ list] k ↦ y ∈ l2, Φ (length l1 + k) y) Q →
Frame p R ([∗ list] k ↦ y ∈ l, Φ k y) Q.
Proof. rewrite /IsApp=>->. by rewrite /Frame big_opL_app. Qed.
Class MakeAnd (P Q PQ : uPred M) := make_and : P ∧ Q ⊣⊢ PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
Global Instance make_and_default P Q : MakeAnd P Q (P ∧ Q) | 100.
Proof. done. Qed.
Global Instance frame_and_l p R P1 P2 Q Q' :
Frame p R P1 Q → MakeAnd Q P2 Q' → Frame p R (P1 ∧ P2) Q' | 9.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and_r p R P1 P2 Q Q' :
Frame p R P2 Q → MakeAnd P1 Q Q' → Frame p R (P1 ∧ P2) Q' | 10.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Class MakeOr (P Q PQ : uPred M) := make_or : P ∨ Q ⊣⊢ PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P ∨ Q) | 100.
Proof. done. Qed.
Global Instance frame_or_persistent_l R P1 P2 Q1 Q2 Q :
Frame true R P1 Q1 → MaybeFrame true R P2 Q2 → MakeOr Q1 Q2 Q →
Frame true R (P1 ∨ P2) Q | 9.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
Global Instance frame_or_persistent_r R P1 P2 Q1 Q2 Q :
MaybeFrame true R P2 Q2 → MakeOr P1 Q2 Q →
Frame true R (P1 ∨ P2) Q | 10.
Proof.
rewrite /Frame /MaybeFrame /MakeOr => <- <-. by rewrite sep_or_l sep_elim_r.
Qed.
Global Instance frame_or R P1 P2 Q1 Q2 Q :
Frame false R P1 Q1 → Frame false R P2 Q2 → MakeOr Q1 Q2 Q →
Frame false R (P1 ∨ P2) Q.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
Global Instance frame_wand p R P1 P2 Q2 :
Frame p R P2 Q2 → Frame p R (P1 -∗ P2) (P1 -∗ Q2).
Proof.
rewrite /Frame=> ?. apply wand_intro_l.
by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.
Class MakeLater (P lP : uPred M) := make_later : ▷ P ⊣⊢ lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_default P : MakeLater P (▷ P) | 100.
Proof. done. Qed.
Global Instance frame_later p R R' P Q Q' :
IntoLaterN 1 R' R → Frame p R P Q → MakeLater Q Q' → Frame p R' (▷ P) Q'.
rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-.
by rewrite always_if_later later_sep.
Qed.
Class MakeLaterN (n : nat) (P lP : uPred M) := make_laterN : ▷^n P ⊣⊢ lP.
Global Instance make_laterN_true n : MakeLaterN n True True.
Proof. by rewrite /MakeLaterN laterN_True. Qed.
Global Instance make_laterN_default P : MakeLaterN n P (▷^n P) | 100.
Proof. done. Qed.
Global Instance frame_laterN p n R R' P Q Q' :
IntoLaterN n R' R → Frame p R P Q → MakeLaterN n Q Q' → Frame p R' (▷^n P) Q'.
Proof.
rewrite /Frame /MakeLater /IntoLaterN=>-> <- <-.
by rewrite always_if_laterN laterN_sep.
Qed.
Class MakeAlways (P Q : uPred M) := make_always : □ P ⊣⊢ Q.
Global Instance make_always_true : MakeAlways True True.
Proof. by rewrite /MakeAlways always_pure. Qed.
Global Instance make_always_default P : MakeAlways P (□ P) | 100.
Proof. done. Qed.
Global Instance frame_always R P Q Q' :
Frame true R P Q → MakeAlways Q Q' → Frame true R (□ P) Q'.
rewrite /Frame /MakeAlways=> <- <-.
by rewrite always_sep /= always_always.
Class MakeExcept0 (P Q : uPred M) := make_except_0 : ◇ P ⊣⊢ Q.
Global Instance make_except_0_True : MakeExcept0 True True.
Proof. by rewrite /MakeExcept0 except_0_True. Qed.
Global Instance make_except_0_default P : MakeExcept0 P (◇ P) | 100.
Global Instance frame_except_0 p R P Q Q' :
Frame p R P Q → MakeExcept0 Q Q' → Frame p R (◇ P) Q'.
by rewrite except_0_sep -(except_0_intro (□?p R)).
Global Instance frame_exist {A} p R (Φ Ψ : A → uPred M) :
(∀ a, Frame p R (Φ a) (Ψ a)) → Frame p R (∃ x, Φ x) (∃ x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
Global Instance frame_forall {A} p R (Φ Ψ : A → uPred M) :
(∀ a, Frame p R (Φ a) (Ψ a)) → Frame p R (∀ x, Φ x) (∀ x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.
Global Instance frame_bupd p R P Q : Frame p R P Q → Frame p R (|==> P) (|==> Q).
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
(* FromOr *)
Global Instance from_or_or P1 P2 : FromOr (P1 ∨ P2) P1 P2.
Proof. done. Qed.
Global Instance from_or_bupd P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (|==> P) (|==> Q1) (|==> Q2).
Proof. rewrite /FromOr=><-. apply or_elim; apply bupd_mono; auto with I. Qed.
Global Instance from_or_pure φ ψ : @FromOr M ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /FromOr pure_or. Qed.
Global Instance from_or_always P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (□ P) (□ Q1) (□ Q2).
Proof. rewrite /FromOr=> <-. by rewrite always_or. Qed.
Global Instance from_or_later P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /FromOr=><-. by rewrite later_or. Qed.
Global Instance from_or_laterN n P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /FromOr=><-. by rewrite laterN_or. Qed.
(* IntoOr *)
Global Instance into_or_or P Q : IntoOr (P ∨ Q) P Q.
Proof. done. Qed.
Global Instance into_or_pure φ ψ : @IntoOr M ⌜φ ∨ ψ⌝ ⌜φ⌝ ⌜ψ⌝.
Proof. by rewrite /IntoOr pure_or. Qed.
Global Instance into_or_always P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (□ P) (□ Q1) (□ Q2).
Proof. rewrite /IntoOr=>->. by rewrite always_or. Qed.
Global Instance into_or_later P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.
Global Instance into_or_laterN n P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /IntoOr=>->. by rewrite laterN_or. Qed.
(* FromExist *)
Global Instance from_exist_exist {A} (Φ : A → uPred M): FromExist (∃ a, Φ a) Φ.
Proof. done. Qed.
Global Instance from_exist_bupd {A} P (Φ : A → uPred M) :
FromExist P Φ → FromExist (|==> P) (λ a, |==> Φ a)%I.
Proof.
rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
Global Instance from_exist_pure {A} (φ : A → Prop) :
@FromExist M A ⌜∃ x, φ x⌝ (λ a, ⌜φ a⌝)%I.
Proof. by rewrite /FromExist pure_exist. Qed.
Global Instance from_exist_always {A} P (Φ : A → uPred M) :
FromExist P Φ → FromExist (□ P) (λ a, □ (Φ a))%I.
Proof.
rewrite /FromExist=> <-. apply exist_elim=>x. apply always_mono, exist_intro.
Qed.
Global Instance from_exist_later {A} P (Φ : A → uPred M) :
FromExist P Φ → FromExist (▷ P) (λ a, ▷ (Φ a))%I.
Proof.
rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro.
Qed.
Global Instance from_exist_laterN {A} n P (Φ : A → uPred M) :
FromExist P Φ → FromExist (▷^n P) (λ a, ▷^n (Φ a))%I.
Proof.
rewrite /FromExist=> <-. apply exist_elim=>x. apply laterN_mono, exist_intro.
Qed.
(* IntoExist *)
Global Instance into_exist_exist {A} (Φ : A → uPred M) : IntoExist (∃ a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_exist_pure {A} (φ : A → Prop) :
@IntoExist M A ⌜∃ x, φ x⌝ (λ a, ⌜φ a⌝)%I.
Proof. by rewrite /IntoExist pure_exist. Qed.
Global Instance into_exist_always {A} P (Φ : A → uPred M) :
IntoExist P Φ → IntoExist (□ P) (λ a, □ (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
Global Instance into_exist_later {A} P (Φ : A → uPred M) :
IntoExist P Φ → Inhabited A → IntoExist (▷ P) (λ a, ▷ (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_laterN {A} n P (Φ : A → uPred M) :
IntoExist P Φ → Inhabited A → IntoExist (▷^n P) (λ a, ▷^n (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed.
(* IntoForall *)
Global Instance into_forall_forall {A} (Φ : A → uPred M) : IntoForall (∀ a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_forall_always {A} P (Φ : A → uPred M) :
IntoForall P Φ → IntoForall (□ P) (λ a, □ (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP always_forall. Qed.
(* FromModal *)
Global Instance from_modal_later P : FromModal (▷ P) P.
Proof. apply later_intro. Qed.
Global Instance from_modal_bupd P : FromModal (|==> P) P.
Proof. apply bupd_intro. Qed.
Global Instance from_modal_except_0 P : FromModal (◇ P) P.
Proof. apply except_0_intro. Qed.
(* ElimModal *)
Global Instance elim_modal_wand P P' Q Q' R :
ElimModal P P' Q Q' → ElimModal P P' (R -∗ Q) (R -∗ Q').
Proof.
rewrite /ElimModal=> H. apply wand_intro_r.
by rewrite wand_curry -assoc (comm _ P') -wand_curry wand_elim_l.
Qed.
Global Instance forall_modal_wand {A} P P' (Φ Ψ : A → uPred M) :
(∀ x, ElimModal P P' (Φ x) (Ψ x)) → ElimModal P P' (∀ x, Φ x) (∀ x, Ψ x).
Proof.
rewrite /ElimModal=> H. apply forall_intro=> a. by rewrite (forall_elim a).
Qed.
Global Instance elim_modal_always P Q : ElimModal (□ P) P Q Q.
Proof. intros. by rewrite /ElimModal always_elim wand_elim_r. Qed.
Global Instance elim_modal_bupd P Q : ElimModal (|==> P) P (|==> Q) (|==> Q).
Proof. by rewrite /ElimModal bupd_frame_r wand_elim_r bupd_trans. Qed.
Global Instance elim_modal_except_0 P Q : IsExcept0 Q → ElimModal (◇ P) P Q Q.
Proof.
intros. rewrite /ElimModal (except_0_intro (_ -∗ _)).
by rewrite -except_0_sep wand_elim_r.
Qed.
Global Instance elim_modal_timeless_bupd P Q :
TimelessP P → IsExcept0 Q → ElimModal (▷ P) P Q Q.
Proof.
intros. rewrite /ElimModal (except_0_intro (_ -∗ _)) (timelessP P).
by rewrite -except_0_sep wand_elim_r.
Qed.
Global Instance elim_modal_timeless_bupd' p P Q :
TimelessP P → IsExcept0 Q → ElimModal (▷?p P) P Q Q.
Proof.
destruct p; simpl; auto using elim_modal_timeless_bupd.
intros _ _. by rewrite /ElimModal wand_elim_r.
Qed.
Global Instance is_except_0_except_0 P : IsExcept0 (◇ P).
Proof. by rewrite /IsExcept0 except_0_idemp. Qed.
Global Instance is_except_0_later P : IsExcept0 (▷ P).
Proof. by rewrite /IsExcept0 except_0_later. Qed.
Global Instance is_except_0_bupd P : IsExcept0 P → IsExcept0 (|==> P).
rewrite /IsExcept0=> HP.
by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P).