Skip to content
Snippets Groups Projects
Commit 947d9147 authored by Ralf Jung's avatar Ralf Jung
Browse files

remove Dom instances with alternative domain types

parent b7a5fed7
No related branches found
No related tags found
No related merge requests found
......@@ -192,15 +192,5 @@ Lemma elem_of_coGset_to_top_set `{Countable A, TopSet A C} X x :
x ∈@{C} coGset_to_top_set X x X.
Proof. destruct X; set_solver. Qed.
(** * Domain of finite maps *)
Global Instance coGset_dom `{Countable K} {A} : Dom (gmap K A) (coGset K) := λ m,
gset_to_coGset (dom _ m).
Global Instance coGset_dom_spec `{Countable K} : FinMapDom K (gmap K) (coGset K).
Proof.
split; try apply _. intros B m i. unfold dom, coGset_dom.
by rewrite elem_of_gset_to_coGset, elem_of_dom.
Qed.
Typeclasses Opaque coGset_elem_of coGset_empty coGset_top coGset_singleton.
Typeclasses Opaque coGset_union coGset_intersection coGset_difference.
Typeclasses Opaque coGset_dom.
......@@ -358,21 +358,6 @@ Proof.
refine (cast_if (decide (¬set_finite X))); by rewrite coPset_infinite_finite.
Defined.
(** * Domain of finite maps *)
Global Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, Pset_to_coPset (dom _ m).
Global Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
Proof.
split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
by rewrite elem_of_Pset_to_coPset, elem_of_dom.
Qed.
Global Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
gset_to_coPset (dom _ m).
Global Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof.
split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
by rewrite elem_of_gset_to_coPset, elem_of_dom.
Qed.
(** * Suffix sets *)
Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
match p with
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment