diff --git a/theories/coGset.v b/theories/coGset.v index 4a0f75e2c1b98ad2b81645a8198df78e0cdecdba..57590d44c03fbf4206fbf3c5a582a6bf7a099ed6 100644 --- a/theories/coGset.v +++ b/theories/coGset.v @@ -192,15 +192,5 @@ Lemma elem_of_coGset_to_top_set `{Countable A, TopSet A C} X x : x ∈@{C} coGset_to_top_set X ↔ x ∈ X. Proof. destruct X; set_solver. Qed. -(** * Domain of finite maps *) -Global Instance coGset_dom `{Countable K} {A} : Dom (gmap K A) (coGset K) := λ m, - gset_to_coGset (dom _ m). -Global Instance coGset_dom_spec `{Countable K} : FinMapDom K (gmap K) (coGset K). -Proof. - split; try apply _. intros B m i. unfold dom, coGset_dom. - by rewrite elem_of_gset_to_coGset, elem_of_dom. -Qed. - Typeclasses Opaque coGset_elem_of coGset_empty coGset_top coGset_singleton. Typeclasses Opaque coGset_union coGset_intersection coGset_difference. -Typeclasses Opaque coGset_dom. diff --git a/theories/coPset.v b/theories/coPset.v index 8e8cb978c846d563b3c6c2042efe6805cecea937..1e2c3765f63001fac745492104bf7ea9a735d258 100644 --- a/theories/coPset.v +++ b/theories/coPset.v @@ -358,21 +358,6 @@ Proof. refine (cast_if (decide (¬set_finite X))); by rewrite coPset_infinite_finite. Defined. -(** * Domain of finite maps *) -Global Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, Pset_to_coPset (dom _ m). -Global Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset. -Proof. - split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset. - by rewrite elem_of_Pset_to_coPset, elem_of_dom. -Qed. -Global Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m, - gset_to_coPset (dom _ m). -Global Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset. -Proof. - split; try apply _; intros A m i; unfold dom, gmap_dom_coPset. - by rewrite elem_of_gset_to_coPset, elem_of_dom. -Qed. - (** * Suffix sets *) Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw := match p with