Skip to content
Snippets Groups Projects
Commit 5ee10883 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

A nicer version of adequacy of Iris and specialize it to heap_lang.

Use it to prove that tests/barrier_client and tests/heap_lang are adequate.
parent 2796b786
No related branches found
No related tags found
No related merge requests found
......@@ -101,6 +101,7 @@ heap_lang/lib/barrier/specification.v
heap_lang/lib/barrier/protocol.v
heap_lang/lib/barrier/proof.v
heap_lang/proofmode.v
heap_lang/adequacy.v
tests/heap_lang.v
tests/one_shot.v
tests/joining_existentials.v
......
......@@ -18,8 +18,6 @@ Class heapG Σ := HeapG {
heap_name : gname
}.
(** The Functor we need. *)
Definition heapGF : gFunctor := authGF heapUR.
Definition to_heap : state heapUR := fmap (λ v, (1%Qp, DecAgree v)).
Definition of_heap : heapUR state := omap (maybe DecAgree snd).
......@@ -101,24 +99,6 @@ Section heap.
Qed.
Hint Resolve heap_store_valid.
(** Allocation *)
Lemma heap_alloc `{irisG heap_lang Σ, authG Σ heapUR} E σ :
ownP σ ={E}=> _ : heapG Σ, heap_ctx [ map] lv σ, l v.
Proof.
intros. rewrite -{1}(from_to_heap σ). etrans.
{ rewrite [ownP _]later_intro.
apply (auth_alloc (ownP of_heap) heapN E); auto using to_heap_valid. }
apply pvs_mono, exist_elim=> γ.
rewrite -(exist_intro (HeapG _ _ _ γ)) /heap_ctx; apply and_mono_r.
rewrite heap_mapsto_eq /heap_mapsto_def /heap_name.
induction σ as [|l v σ Hl IH] using map_ind.
{ rewrite big_sepM_empty; apply True_intro. }
rewrite to_heap_insert big_sepM_insert //.
rewrite (insert_singleton_op (to_heap σ));
last by rewrite lookup_fmap Hl; auto.
by rewrite auth_own_op IH.
Qed.
Context `{heapG Σ}.
(** General properties of mapsto *)
......
......@@ -4,6 +4,29 @@ From iris.program_logic Require Import ownership.
From iris.proofmode Require Import tactics weakestpre.
Import uPred.
Record adequate {Λ} (e1 : expr Λ) (σ1 : state Λ) (φ : val Λ Prop) := {
adequate_result t2 σ2 v2 :
rtc step ([e1], σ1) (of_val v2 :: t2, σ2) φ v2;
adequate_safe t2 σ2 e2 :
rtc step ([e1], σ1) (t2, σ2)
e2 t2 (is_Some (to_val e2) reducible e2 σ2)
}.
Theorem adequate_tp_safe {Λ} (e1 : expr Λ) t2 σ1 σ2 φ :
adequate e1 σ1 φ
rtc step ([e1], σ1) (t2, σ2)
Forall (λ e, is_Some (to_val e)) t2 t3 σ3, step (t2, σ2) (t3, σ3).
Proof.
intros Had ?.
destruct (decide (Forall (λ e, is_Some (to_val e)) t2)) as [|Ht2]; [by left|].
apply (not_Forall_Exists _), Exists_exists in Ht2; destruct Ht2 as (e2&?&He2).
destruct (adequate_safe e1 σ1 φ Had t2 σ2 e2) as [?|(e3&σ3&ef&?)];
rewrite ?eq_None_not_Some; auto.
{ exfalso. eauto. }
destruct (elem_of_list_split t2 e2) as (t2'&t2''&->); auto.
right; exists (t2' ++ e3 :: t2'' ++ option_list ef), σ3; econstructor; eauto.
Qed.
Section adequacy.
Context `{irisG Λ Σ}.
Implicit Types e : expr Λ.
......@@ -102,41 +125,19 @@ Proof.
Qed.
End adequacy.
Theorem adequacy_result `{irisPreG Λ Σ} e v2 t2 σ1 σ2 φ :
( `{irisG Λ Σ}, ownP σ1 WP e {{ v, φ v }})
rtc step ([e], σ1) (of_val v2 :: t2, σ2)
φ v2.
Theorem wp_adequacy Σ `{irisPreG Λ Σ} e σ φ :
( `{irisG Λ Σ}, ownP σ WP e {{ v, φ v }})
adequate e σ φ.
Proof.
intros Hwp [n ?]%rtc_nsteps.
eapply (adequacy (M:=iResUR Σ) _ (S (S (S n)))); iIntros "".
rewrite Nat_iter_S. iVs (iris_alloc σ1) as (?) "(?&?&?&Hσ)".
iVsIntro. iNext. iApply wptp_result; eauto.
iFrame. iSplitL. by iApply Hwp. done.
Qed.
Lemma wp_adequacy_reducible `{irisPreG Λ Σ} e1 e2 t2 σ1 σ2 Φ :
( `{irisG Λ Σ}, ownP σ1 WP e1 {{ Φ }})
rtc step ([e1], σ1) (t2, σ2)
e2 t2 (is_Some (to_val e2) reducible e2 σ2).
Proof.
intros Hwp [n ?]%rtc_nsteps ?.
eapply (adequacy (M:=iResUR Σ) _ (S (S (S n)))); iIntros "".
rewrite Nat_iter_S. iVs (iris_alloc σ1) as (?) "(Hw & HE & Hσ & Hσf)".
iVsIntro. iNext. iApply wptp_safe; eauto.
iFrame "Hw HE Hσ". iSplitL. by iApply Hwp. done.
Qed.
Theorem wp_adequacy_safe `{irisPreG Λ Σ} e1 t2 σ1 σ2 Φ :
( `{irisG Λ Σ}, ownP σ1 WP e1 {{ Φ }})
rtc step ([e1], σ1) (t2, σ2)
Forall (λ e, is_Some (to_val e)) t2 t3 σ3, step (t2, σ2) (t3, σ3).
Proof.
intros.
destruct (decide (Forall (λ e, is_Some (to_val e)) t2)) as [|Ht2]; [by left|].
apply (not_Forall_Exists _), Exists_exists in Ht2; destruct Ht2 as (e2&?&He2).
destruct (wp_adequacy_reducible e1 e2 t2 σ1 σ2 Φ) as [?|(e3&σ3&ef&?)];
rewrite ?eq_None_not_Some; auto.
{ exfalso. eauto. }
destruct (elem_of_list_split t2 e2) as (t2'&t2''&->); auto.
right; exists (t2' ++ e3 :: t2'' ++ option_list ef), σ3; econstructor; eauto.
intros Hwp; split.
- intros t2 σ2 v2 [n ?]%rtc_nsteps.
eapply (adequacy (M:=iResUR Σ) _ (S (S (S n)))); iIntros "".
rewrite Nat_iter_S. iVs (iris_alloc σ) as (?) "(?&?&?&Hσ)".
iVsIntro. iNext. iApply wptp_result; eauto.
iFrame. iSplitL; auto. by iApply Hwp.
- intros t2 σ2 e2 [n ?]%rtc_nsteps ?.
eapply (adequacy (M:=iResUR Σ) _ (S (S (S n)))); iIntros "".
rewrite Nat_iter_S. iVs (iris_alloc σ) as (?) "(Hw & HE & Hσ & Hσf)".
iVsIntro. iNext. iApply wptp_safe; eauto.
iFrame "Hw HE Hσ". iSplitL; auto. by iApply Hwp.
Qed.
......@@ -64,7 +64,7 @@ Module gFunctors.
Definition nil : gFunctors := existT 0 (fin_0_inv _).
Definition cons (F : gFunctor) (Σ : gFunctors) : gFunctors :=
existT (S (projT1 Σ)) (fin_S_inv _ F (projT2 Σ)).
existT (S (projT1 Σ)) (fin_S_inv _ F (projT2 Σ)).
Fixpoint app (Fs : gFunctorList) (Σ : gFunctors) : gFunctors :=
match Fs with
......
......@@ -17,13 +17,13 @@ Class irisG (Λ : language) (Σ : gFunctors) : Set := IrisG {
disabled_name : gname;
}.
Definition irisPreGF (Λ : language) : gFunctorList :=
Definition irisGF (Λ : language) : gFunctorList :=
[GFunctor (constRF (authUR (optionUR (exclR (stateC Λ)))));
GFunctor (authRF (gmapURF positive (agreeRF (laterCF idCF))));
GFunctor (constRF coPset_disjUR);
GFunctor (constRF (gset_disjUR positive))].
Instance inGF_barrierG `{H : inGFs Σ (irisPreGF Λ)} : irisPreG Λ Σ.
Instance inGF_barrierG `{H : inGFs Σ (irisGF Λ)} : irisPreG Λ Σ.
Proof.
by destruct H as (?%inGF_inG & ?%inGF_inG & ?%inGF_inG & ?%inGF_inG & _).
Qed.
......@@ -3,7 +3,7 @@ From iris.heap_lang Require Export lang.
From iris.heap_lang.lib.barrier Require Import proof.
From iris.heap_lang Require Import par.
From iris.program_logic Require Import auth sts saved_prop hoare ownership.
From iris.heap_lang Require Import proofmode.
From iris.heap_lang Require Import adequacy proofmode.
Definition worker (n : Z) : val :=
λ: "b" "y", wait "b" ;; !"y" #n.
......@@ -57,18 +57,10 @@ Section client.
Qed.
End client.
(*
Section ClosedProofs.
Definition Σ : gFunctors := #[ heapGF ; barrierGF ; spawnGF ].
Notation iProp := (iPropG heap_lang Σ).
Lemma client_safe_closed σ : {{ ownP σ : iProp }} client {{ v, True }}.
Proof.
iIntros "! Hσ".
iVs (heap_alloc with "Hσ") as (h) "[#Hh _]"; first done.
iApply (client_safe (nroot .@ "barrier")); auto with ndisj.
Qed.
Lemma client_adequate σ : adequate client σ (λ _, True).
Proof.
apply (heap_adequacy #[ heapGF ; barrierGF ; spawnGF ])=> ?.
apply (client_safe (nroot .@ "barrier")); auto with ndisj.
Qed.
Print Assumptions client_safe_closed.
End ClosedProofs.
*)
\ No newline at end of file
Print Assumptions client_adequate.
(** This file is essentially a bunch of testcases. *)
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Export weakestpre hoare.
From iris.heap_lang Require Export lang.
From iris.program_logic Require Import ownership hoare.
From iris.heap_lang Require Import adequacy.
From iris.program_logic Require Import ownership.
From iris.heap_lang Require Import proofmode notation.
Section LangTests.
......@@ -75,15 +76,5 @@ Section LiftingTests.
Proof. iIntros "". wp_apply Pred_spec. wp_let. by wp_apply Pred_spec. Qed.
End LiftingTests.
(*
Section ClosedProofs.
Definition Σ : gFunctors := #[ irisPreGF; heapGF ].
Lemma heap_e_closed σ : {{ ownP σ : iProp Σ }} heap_e {{ v, v = #2 }}.
Proof.
iProof. iIntros "! Hσ".
iVs (heap_alloc with "Hσ") as (h) "[? _]"; first solve_ndisj.
by iApply heap_e_spec; first solve_ndisj.
Qed.
End ClosedProofs.
*)
\ No newline at end of file
Lemma heap_e_adequate σ : adequate heap_e σ (λ v, v = #2).
Proof. eapply (heap_adequacy #[ heapGF ])=> ?. by apply heap_e_spec. Qed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment