Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
8f33e282
Commit
8f33e282
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Big ops on multisets.
Many useful properties are probably still missing.
parent
aa4c7544
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/cmra_big_op.v
+73
-1
73 additions, 1 deletion
algebra/cmra_big_op.v
with
73 additions
and
1 deletion
algebra/cmra_big_op.v
+
73
−
1
View file @
8f33e282
From
iris
.
algebra
Require
Export
cmra
list
.
From
iris
.
algebra
Require
Export
cmra
list
.
From
iris
.
prelude
Require
Import
functions
gmap
.
From
iris
.
prelude
Require
Import
functions
gmap
gmultiset
.
(** The operator [ [⋅] Ps ] folds [⋅] over the list [Ps]. This operator is not a
(** The operator [ [⋅] Ps ] folds [⋅] over the list [Ps]. This operator is not a
quantifier, so it binds strongly.
quantifier, so it binds strongly.
...
@@ -56,6 +56,14 @@ Notation "'[⋅' 'set' ] x ∈ X , P" := (big_opS X (λ x, P))
...
@@ -56,6 +56,14 @@ Notation "'[⋅' 'set' ] x ∈ X , P" := (big_opS X (λ x, P))
(
at
level
200
,
X
at
level
10
,
x
at
level
1
,
right
associativity
,
(
at
level
200
,
X
at
level
10
,
x
at
level
1
,
right
associativity
,
format
"[⋅ set ] x ∈ X , P"
)
:
C_scope
.
format
"[⋅ set ] x ∈ X , P"
)
:
C_scope
.
Definition
big_opMS
{
M
:
ucmraT
}
`{
Countable
A
}
(
X
:
gmultiset
A
)
(
f
:
A
→
M
)
:
M
:=
[
⋅
]
(
f
<$>
elements
X
)
.
Instance
:
Params
(
@
big_opMS
)
5
.
Typeclasses
Opaque
big_opMS
.
Notation
"'[⋅' 'mset' ] x ∈ X , P"
:=
(
big_opMS
X
(
λ
x
,
P
))
(
at
level
200
,
X
at
level
10
,
x
at
level
1
,
right
associativity
,
format
"[⋅ 'mset' ] x ∈ X , P"
)
:
C_scope
.
(** * Properties about big ops *)
(** * Properties about big ops *)
Section
big_op
.
Section
big_op
.
Context
{
M
:
ucmraT
}
.
Context
{
M
:
ucmraT
}
.
...
@@ -388,6 +396,70 @@ Section gset.
...
@@ -388,6 +396,70 @@ Section gset.
by
rewrite
IH
-!
assoc
(
assoc
_
(
g
_))
[(
g
_
⋅
_)]
comm
-!
assoc
.
by
rewrite
IH
-!
assoc
(
assoc
_
(
g
_))
[(
g
_
⋅
_)]
comm
-!
assoc
.
Qed
.
Qed
.
End
gset
.
End
gset
.
(** ** Big ops over finite msets *)
Section
gmultiset
.
Context
`{
Countable
A
}
.
Implicit
Types
X
:
gmultiset
A
.
Implicit
Types
f
:
A
→
M
.
Lemma
big_opMS_forall
R
f
g
X
:
Reflexive
R
→
Proper
(
R
==>
R
==>
R
)
(
@
op
M
_)
→
(
∀
x
,
x
∈
X
→
R
(
f
x
)
(
g
x
))
→
R
([
⋅
mset
]
x
∈
X
,
f
x
)
([
⋅
mset
]
x
∈
X
,
g
x
)
.
Proof
.
intros
??
Hf
.
apply
(
big_op_Forall2
R
_
_),
Forall2_fmap
,
Forall_Forall2
.
apply
Forall_forall
=>
x
?
/=.
by
apply
Hf
,
gmultiset_elem_of_elements
.
Qed
.
Lemma
big_opMS_mono
f
g
X
Y
:
X
⊆
Y
→
(
∀
x
,
x
∈
Y
→
f
x
≼
g
x
)
→
([
⋅
mset
]
x
∈
X
,
f
x
)
≼
[
⋅
mset
]
x
∈
Y
,
g
x
.
Proof
.
intros
HX
Hf
.
trans
([
⋅
mset
]
x
∈
Y
,
f
x
)
.
-
by
apply
big_op_contains
,
fmap_contains
,
gmultiset_elements_contains
.
-
apply
big_opMS_forall
;
apply
_
||
auto
.
Qed
.
Lemma
big_opMS_ext
f
g
X
:
(
∀
x
,
x
∈
X
→
f
x
=
g
x
)
→
([
⋅
mset
]
x
∈
X
,
f
x
)
=
([
⋅
mset
]
x
∈
X
,
g
x
)
.
Proof
.
apply
big_opMS_forall
;
apply
_
.
Qed
.
Lemma
big_opMS_proper
f
g
X
:
(
∀
x
,
x
∈
X
→
f
x
≡
g
x
)
→
([
⋅
mset
]
x
∈
X
,
f
x
)
≡
([
⋅
mset
]
x
∈
X
,
g
x
)
.
Proof
.
apply
big_opMS_forall
;
apply
_
.
Qed
.
Lemma
big_opMS_ne
X
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
dist
n
)
(
big_opMS
(
M
:=
M
)
X
)
.
Proof
.
intros
f
g
Hf
.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opMS_proper'
X
:
Proper
(
pointwise_relation
_
(
≡
)
==>
(
≡
))
(
big_opMS
(
M
:=
M
)
X
)
.
Proof
.
intros
f
g
Hf
.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opMS_mono'
X
:
Proper
(
pointwise_relation
_
(
≼
)
==>
(
≼
))
(
big_opMS
(
M
:=
M
)
X
)
.
Proof
.
intros
f
g
Hf
.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opMS_empty
f
:
([
⋅
mset
]
x
∈
∅
,
f
x
)
=
∅.
Proof
.
by
rewrite
/
big_opMS
gmultiset_elements_empty
.
Qed
.
Lemma
big_opMS_union
f
X
Y
:
([
⋅
mset
]
y
∈
X
∪
Y
,
f
y
)
≡
([
⋅
mset
]
y
∈
X
,
f
y
)
⋅
[
⋅
mset
]
y
∈
Y
,
f
y
.
Proof
.
by
rewrite
/
big_opMS
gmultiset_elements_union
fmap_app
big_op_app
.
Qed
.
Lemma
big_opMS_singleton
f
x
:
([
⋅
mset
]
y
∈
{[
x
]},
f
y
)
≡
f
x
.
Proof
.
intros
.
by
rewrite
/
big_opMS
gmultiset_elements_singleton
/=
right_id
.
Qed
.
Lemma
big_opMS_opS
f
g
X
:
([
⋅
mset
]
y
∈
X
,
f
y
⋅
g
y
)
≡
([
⋅
mset
]
y
∈
X
,
f
y
)
⋅
([
⋅
mset
]
y
∈
X
,
g
y
)
.
Proof
.
rewrite
/
big_opMS
.
induction
(
elements
X
)
as
[|
x
l
IH
];
csimpl
;
first
by
rewrite
?right_id
.
by
rewrite
IH
-!
assoc
(
assoc
_
(
g
_))
[(
g
_
⋅
_)]
comm
-!
assoc
.
Qed
.
End
gmultiset
.
End
big_op
.
End
big_op
.
(** Option *)
(** Option *)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment