Skip to content
Snippets Groups Projects
Commit 418eeacc authored by Aleš Bizjak's avatar Aleš Bizjak
Browse files

Fixed some typos in the appendix.

parent 97e8a9de
No related branches found
No related tags found
No related merge requests found
...@@ -46,14 +46,13 @@ We introduce an additional logical connective $\ownM\melt$, which will later be ...@@ -46,14 +46,13 @@ We introduce an additional logical connective $\ownM\melt$, which will later be
For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone. For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone.
\subsection{Iris model} \subsection{Iris model}
\paragraph{Semantic domain of assertions.} \paragraph{Semantic domain of assertions.}
The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$. The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$.
We start by defining the functor that assembles the CMRAs we need to the global resource CMRA: We start by defining the functor that assembles the CMRAs we need to the global resource CMRA:
\begin{align*} \begin{align*}
\textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \agm(\latert \cofe), \pres: \exm(\textdom{State}), \ghostRes: \iFunc(\cofe^\op, \cofe)} \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \mathbb{N} \fpfn \agm(\latert \cofe), \pres: \exm(\textdom{State}), \ghostRes: \iFunc(\cofe^\op, \cofe)}
\end{align*} \end{align*}
Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$. Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$.
$\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise. $\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise.
...@@ -87,7 +86,7 @@ We only have to define the interpretation of the missing connectives, the most i ...@@ -87,7 +86,7 @@ We only have to define the interpretation of the missing connectives, the most i
\wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t] \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t]
\rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land
\dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\ \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\
\All\iname \in \mask, \prop. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname)) \All\iname \in \mask, \prop \in \iProp. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
\end{inbox}\\ \end{inbox}\\
\wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))} \wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))}
\end{align*} \end{align*}
...@@ -95,7 +94,7 @@ We only have to define the interpretation of the missing connectives, the most i ...@@ -95,7 +94,7 @@ We only have to define the interpretation of the missing connectives, the most i
\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp} \typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp}
\begin{align*} \begin{align*}
\mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned} \mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned}
\All \rs_\f, m, \mask_\f, \state.& 0 < m \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\& \All \rs_\f, k, \mask_\f, \state.& 0 < k \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
\Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f} \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f}
\end{aligned}} \end{aligned}}
\end{align*} \end{align*}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment