diff --git a/docs/model.tex b/docs/model.tex
index d8595b6bae293ca094ea2efda9123c55edea95df..f6ce778183b83d9714185250e1a298940cf0736e 100644
--- a/docs/model.tex
+++ b/docs/model.tex
@@ -46,14 +46,13 @@ We introduce an additional logical connective $\ownM\melt$, which will later be
 
 For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone.
 
-
 \subsection{Iris model}
 
 \paragraph{Semantic domain of assertions.}
 The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$.
 We start by defining the functor that assembles the CMRAs we need to the global resource CMRA:
 \begin{align*}
-  \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \agm(\latert \cofe), \pres: \exm(\textdom{State}), \ghostRes: \iFunc(\cofe^\op, \cofe)}
+  \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \mathbb{N} \fpfn \agm(\latert \cofe), \pres: \exm(\textdom{State}), \ghostRes: \iFunc(\cofe^\op, \cofe)}
 \end{align*}
 Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$.
 $\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise.
@@ -87,7 +86,7 @@ We only have to define the interpretation of the missing connectives, the most i
   \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t]
     \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land 
     \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\
-    \All\iname \in \mask, \prop. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
+    \All\iname \in \mask, \prop \in \iProp. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
   \end{inbox}\\
 	\wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))}
 \end{align*}
@@ -95,7 +94,7 @@ We only have to define the interpretation of the missing connectives, the most i
 \typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp}
 \begin{align*}
 	\mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned}
-            \All \rs_\f, m, \mask_\f, \state.& 0 < m \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
+            \All \rs_\f, k, \mask_\f, \state.& 0 < k \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
             \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f}
           \end{aligned}}
 \end{align*}