- Oct 21, 2020
-
-
Robbert Krebbers authored
This also required changing the order a bit. ```coq Lemma gmap_view_auth_frac_op_valid q1 q2 m1 m2 : ✓ (gmap_view_auth q1 m1 ⋅ gmap_view_auth q2 m2)
✓ (q1 + q2)%Qp ∧ m1 ≡ m2. Lemma gmap_view_auth_op_valid m1 m2 : ✓ (gmap_view_auth 1 m1 ⋅ gmap_view_auth 1 m2) False. ``` -
Robbert Krebbers authored
The diff might be hard to read, because I had to change the order. The following lemmas have been added: ```coq Lemma view_auth_frac_op_validN n q1 q2 a1 a2 : ✓{n} (●V{q1} a1 ⋅ ●V{q2} a2)
✓ (q1 + q2)%Qp ∧ a1 ≡{n}≡ a2 ∧ rel n a1 ε. Lemma view_auth_op_validN n a1 a2 : ✓{n} (●V a1 ⋅ ●V a2) False. Lemma view_auth_frac_op_valid q1 q2 a1 a2 : ✓ (●V{q1} a1 ⋅ ●V{q2} a2) ✓ (q1 + q2)%Qp ∧ a1 ≡ a2 ∧ ∀ n, rel n a1 ε. Lemma view_auth_op_valid a1 a2 : ✓ (●V a1 ⋅ ●V a2) False. Lemma auth_auth_frac_op_validN n q1 q2 a1 a2 : ✓{n} (●{q1} a1 ⋅ ●{q2} a2) ✓ (q1 + q2)%Qp ∧ a1 ≡{n}≡ a2 ∧ ✓{n} a1. Lemma auth_auth_op_validN n a1 a2 : ✓{n} (● a1 ⋅ ● a2) False. Lemma auth_auth_frac_op_valid q1 q2 a1 a2 : ✓ (●{q1} a1 ⋅ ●{q2} a2) ✓ (q1 + q2)%Qp ∧ a1 ≡ a2 ∧ ✓ a1. Lemma auth_auth_op_valid a1 a2 : ✓ (● a1 ⋅ ● a2) False. ``` -
Ralf Jung authored
-
Ralf Jung authored
-
Ralf Jung authored
-
Robbert Krebbers authored
-
- Oct 20, 2020
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Ralf Jung authored
-
Robbert Krebbers authored
Thanks @Blaisorblade for reporting.
-
Ralf Jung authored
-
Ralf Jung authored
-
Ralf Jung authored
-
- Oct 15, 2020
- Oct 14, 2020
-
-
Ralf Jung authored
-
- Oct 13, 2020
- Oct 12, 2020
-
-
Robbert Krebbers authored
-
Robbert Krebbers authored
1.) First `simpl` away all the functors 2.) Don't use `done`, which calls `split`.
-
Ralf Jung authored
-
Ralf Jung authored
-
Ralf Jung authored
-
- Oct 10, 2020
- Oct 09, 2020
- Oct 08, 2020
-
-
Robbert Krebbers authored
-
Ralf Jung authored
-
Ralf Jung authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-
Robbert Krebbers authored
-