Skip to content
Snippets Groups Projects
Commit 0c0f339e authored by Ralf Jung's avatar Ralf Jung
Browse files

Merge remote-tracking branch 'origin/master' into gen_proofmode

parents 7adbdee1 5d40b106
No related branches found
No related tags found
No related merge requests found
......@@ -10,6 +10,11 @@ This version is known to compile with:
- Coq 8.7.1 / 8.7.2 / 8.8.0
- A development version of [std++](https://gitlab.mpi-sws.org/robbertkrebbers/coq-stdpp)
For a version compatible with Coq 8.6, have a look at the
[iris-3.1 branch](https://gitlab.mpi-sws.org/FP/iris-coq/tree/iris-3.1).
If you need to work with Coq 8.5, please check out the
[iris-3.0 branch](https://gitlab.mpi-sws.org/FP/iris-coq/tree/iris-3.0).
## Installing via opam
To obtain the latest stable release via opam (1.2.2 or newer), you have to add
......
......@@ -22,6 +22,7 @@ theories/algebra/vector.v
theories/algebra/updates.v
theories/algebra/local_updates.v
theories/algebra/gset.v
theories/algebra/gmultiset.v
theories/algebra/coPset.v
theories/algebra/deprecated.v
theories/algebra/proofmode_classes.v
......
......@@ -10,6 +10,6 @@ build: [make "-j%{jobs}%"]
install: [make "install"]
remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"]
depends: [
"coq" { >= "8.7.1" & < "8.9~" | (= "dev") }
"coq" { (>= "8.7.1" & < "8.9~") | (= "dev") }
"coq-stdpp" { (= "dev.2018-04-06.0") | (= "dev") }
]
From iris.algebra Require Export cmra.
From iris.algebra Require Import updates local_updates.
From stdpp Require Export collections gmultiset countable.
Set Default Proof Using "Type".
(* The multiset union CMRA *)
Section gmultiset.
Context `{Countable K}.
Implicit Types X Y : gmultiset K.
Canonical Structure gmultisetC := discreteC (gmultiset K).
Instance gmultiset_valid : Valid (gmultiset K) := λ _, True.
Instance gmultiset_validN : ValidN (gmultiset K) := λ _ _, True.
Instance gmultiset_unit : Unit (gmultiset K) := ( : gmultiset K).
Instance gmultiset_op : Op (gmultiset K) := union.
Instance gmultiset_pcore : PCore (gmultiset K) := λ X, Some ∅.
Lemma gmultiset_op_union X Y : X Y = X Y.
Proof. done. Qed.
Lemma gmultiset_core_empty X : core X = ∅.
Proof. done. Qed.
Lemma gmultiset_included X Y : X Y X Y.
Proof.
split.
- intros [Z ->%leibniz_equiv].
rewrite gmultiset_op_union. apply gmultiset_union_subseteq_l.
- intros ->%gmultiset_union_difference. by exists (Y X).
Qed.
Lemma gmultiset_ra_mixin : RAMixin (gmultiset K).
Proof.
apply ra_total_mixin; eauto.
- by intros X Y Z ->%leibniz_equiv.
- by intros X Y ->%leibniz_equiv.
- solve_proper.
- intros X1 X2 X3. by rewrite !gmultiset_op_union assoc_L.
- intros X1 X2. by rewrite !gmultiset_op_union comm_L.
- intros X. by rewrite gmultiset_core_empty left_id.
- intros X1 X2 HX. rewrite !gmultiset_core_empty. exists ∅.
by rewrite left_id.
Qed.
Canonical Structure gmultisetR := discreteR (gmultiset K) gmultiset_ra_mixin.
Global Instance gmultiset_cmra_discrete : CmraDiscrete gmultisetR.
Proof. apply discrete_cmra_discrete. Qed.
Lemma gmultiset_ucmra_mixin : UcmraMixin (gmultiset K).
Proof. split. done. intros X. by rewrite gmultiset_op_union left_id_L. done. Qed.
Canonical Structure gmultisetUR := UcmraT (gmultiset K) gmultiset_ucmra_mixin.
Lemma gmultiset_opM X mY : X ? mY = X from_option id mY.
Proof. destruct mY; by rewrite /= ?right_id_L. Qed.
Lemma gmultiset_update X Y : X ~~> Y.
Proof. done. Qed.
Lemma gmultiset_local_update_alloc X Y X' : (X,Y) ~l~> (X X', Y X').
Proof.
rewrite local_update_unital_discrete=> Z' _ /leibniz_equiv_iff->.
split. done. rewrite !gmultiset_op_union.
by rewrite -!assoc (comm _ Z' X').
Qed.
Lemma gmultiset_local_update_dealloc X Y X' : X' X X' Y (X,Y) ~l~> (X X', Y X').
Proof.
intros ->%gmultiset_union_difference ->%gmultiset_union_difference.
rewrite local_update_unital_discrete=> Z' _ /leibniz_equiv_iff->.
split. done. rewrite !gmultiset_op_union=> x.
repeat (rewrite multiplicity_difference || rewrite multiplicity_union).
omega.
Qed.
End gmultiset.
Arguments gmultisetC _ {_ _}.
Arguments gmultisetR _ {_ _}.
Arguments gmultisetUR _ {_ _}.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment