diff --git a/README.md b/README.md
index 3950fdafa95f1978b6435d84cce44d64a5668ada..9453e1e25df4b8c2713e8ee0524fad9248b23154 100644
--- a/README.md
+++ b/README.md
@@ -10,6 +10,11 @@ This version is known to compile with:
  - Coq 8.7.1 / 8.7.2 / 8.8.0
  - A development version of [std++](https://gitlab.mpi-sws.org/robbertkrebbers/coq-stdpp)
 
+For a version compatible with Coq 8.6, have a look at the
+[iris-3.1 branch](https://gitlab.mpi-sws.org/FP/iris-coq/tree/iris-3.1).
+If you need to work with Coq 8.5, please check out the
+[iris-3.0 branch](https://gitlab.mpi-sws.org/FP/iris-coq/tree/iris-3.0).
+
 ## Installing via opam
 
 To obtain the latest stable release via opam (1.2.2 or newer), you have to add
diff --git a/_CoqProject b/_CoqProject
index 86c783a15c58f8a092d97d4f40458bcafa12f1fe..ef9ce69e3574f0f9b6b5e265c949f4fae273eae3 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -22,6 +22,7 @@ theories/algebra/vector.v
 theories/algebra/updates.v
 theories/algebra/local_updates.v
 theories/algebra/gset.v
+theories/algebra/gmultiset.v
 theories/algebra/coPset.v
 theories/algebra/deprecated.v
 theories/algebra/proofmode_classes.v
diff --git a/opam b/opam
index 33b35c14ba4d785a1e043724f7bf04e52fc304f5..c39ba665638b613d6206f7f9ef8233ca22e59bef 100644
--- a/opam
+++ b/opam
@@ -10,6 +10,6 @@ build: [make "-j%{jobs}%"]
 install: [make "install"]
 remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"]
 depends: [
-  "coq" { >= "8.7.1" & < "8.9~" | (= "dev") }
+  "coq" { (>= "8.7.1" & < "8.9~") | (= "dev") }
   "coq-stdpp" { (= "dev.2018-04-06.0") | (= "dev") }
 ]
diff --git a/theories/algebra/gmultiset.v b/theories/algebra/gmultiset.v
new file mode 100644
index 0000000000000000000000000000000000000000..86a1fc0c8b8f11a41db9907f57a170008942323a
--- /dev/null
+++ b/theories/algebra/gmultiset.v
@@ -0,0 +1,79 @@
+From iris.algebra Require Export cmra.
+From iris.algebra Require Import updates local_updates.
+From stdpp Require Export collections gmultiset countable.
+Set Default Proof Using "Type".
+
+(* The multiset union CMRA *)
+Section gmultiset.
+  Context `{Countable K}.
+  Implicit Types X Y : gmultiset K.
+
+  Canonical Structure gmultisetC := discreteC (gmultiset K).
+
+  Instance gmultiset_valid : Valid (gmultiset K) := λ _, True.
+  Instance gmultiset_validN : ValidN (gmultiset K) := λ _ _, True.
+  Instance gmultiset_unit : Unit (gmultiset K) := (∅ : gmultiset K).
+  Instance gmultiset_op : Op (gmultiset K) := union.
+  Instance gmultiset_pcore : PCore (gmultiset K) := λ X, Some ∅.
+
+  Lemma gmultiset_op_union X Y : X ⋅ Y = X ∪ Y.
+  Proof. done. Qed.
+  Lemma gmultiset_core_empty X : core X = ∅.
+  Proof. done. Qed.
+  Lemma gmultiset_included X Y : X ≼ Y ↔ X ⊆ Y.
+  Proof.
+    split.
+    - intros [Z ->%leibniz_equiv].
+      rewrite gmultiset_op_union. apply gmultiset_union_subseteq_l.
+    - intros ->%gmultiset_union_difference. by exists (Y ∖ X).
+  Qed.
+
+  Lemma gmultiset_ra_mixin : RAMixin (gmultiset K).
+  Proof.
+    apply ra_total_mixin; eauto.
+    - by intros X Y Z ->%leibniz_equiv.
+    - by intros X Y ->%leibniz_equiv.
+    - solve_proper.
+    - intros X1 X2 X3. by rewrite !gmultiset_op_union assoc_L.
+    - intros X1 X2. by rewrite !gmultiset_op_union comm_L.
+    - intros X. by rewrite gmultiset_core_empty left_id.
+    - intros X1 X2 HX. rewrite !gmultiset_core_empty. exists ∅.
+      by rewrite left_id.
+  Qed.
+
+  Canonical Structure gmultisetR := discreteR (gmultiset K) gmultiset_ra_mixin.
+
+  Global Instance gmultiset_cmra_discrete : CmraDiscrete gmultisetR.
+  Proof. apply discrete_cmra_discrete. Qed.
+
+  Lemma gmultiset_ucmra_mixin : UcmraMixin (gmultiset K).
+  Proof. split. done. intros X. by rewrite gmultiset_op_union left_id_L. done. Qed.
+  Canonical Structure gmultisetUR := UcmraT (gmultiset K) gmultiset_ucmra_mixin.
+
+  Lemma gmultiset_opM X mY : X ⋅? mY = X ∪ from_option id ∅ mY.
+  Proof. destruct mY; by rewrite /= ?right_id_L. Qed.
+
+  Lemma gmultiset_update X Y : X ~~> Y.
+  Proof. done. Qed.
+
+  Lemma gmultiset_local_update_alloc X Y X' : (X,Y) ~l~> (X ∪ X', Y ∪ X').
+  Proof.
+    rewrite local_update_unital_discrete=> Z' _ /leibniz_equiv_iff->.
+    split. done. rewrite !gmultiset_op_union.
+    by rewrite -!assoc (comm _ Z' X').
+  Qed.
+
+  Lemma gmultiset_local_update_dealloc X Y X' : X' ⊆ X → X' ⊆ Y → (X,Y) ~l~> (X ∖ X', Y ∖ X').
+  Proof.
+    intros ->%gmultiset_union_difference ->%gmultiset_union_difference.
+    rewrite local_update_unital_discrete=> Z' _ /leibniz_equiv_iff->.
+    split. done. rewrite !gmultiset_op_union=> x.
+    repeat (rewrite multiplicity_difference || rewrite multiplicity_union).
+    omega.
+  Qed.
+
+End gmultiset.
+
+Arguments gmultisetC _ {_ _}.
+Arguments gmultisetR _ {_ _}.
+Arguments gmultisetUR _ {_ _}.