Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • iris/stdpp
  • johannes/stdpp
  • proux1/stdpp
  • dosualdo/stdpp
  • benoit/coq-stdpp
  • dfrumin/coq-stdpp
  • haidang/stdpp
  • amintimany/coq-stdpp
  • swasey/coq-stdpp
  • simongregersen/stdpp
  • proux/stdpp
  • janno/coq-stdpp
  • amaurremi/coq-stdpp
  • msammler/stdpp
  • tchajed/stdpp
  • YaZko/stdpp
  • maximedenes/stdpp
  • jakobbotsch/stdpp
  • Blaisorblade/stdpp
  • simonspies/stdpp
  • lepigre/stdpp
  • devilhena/stdpp
  • simonfv/stdpp
  • jihgfee/stdpp
  • snyke7/stdpp
  • Armael/stdpp
  • gmalecha/stdpp
  • olaure01/stdpp
  • sarahzrf/stdpp
  • atrieu/stdpp
  • herbelin/stdpp
  • arthuraa/stdpp
  • lgaeher/stdpp
  • mrhaandi/stdpp
  • mattam82/stdpp
  • Quarkbeast/stdpp
  • aa755/stdpp
  • gmevel/stdpp
  • lstefane/stdpp
  • jung/stdpp
  • vsiles/stdpp
  • dlesbre/stdpp
  • bergwerf/stdpp
  • marijnvanwezel/stdpp
  • ivanbakel/stdpp
  • tperami/stdpp
  • adamAndMath/stdpp
  • Villetaneuse/stdpp
  • sanjit/stdpp
  • yiyunliu/stdpp
  • thomas-lamiaux/stdpp
  • Tragicus/stdpp
  • kbedarka/stdpp
53 results
Show changes
Commits on Source (886)
......@@ -15,7 +15,12 @@
.coq-native/
Makefile.coq
Makefile.coq.conf
_CoqProject.*
Makefile.package.*
.Makefile.package.*
*.crashcoqide
html/
builddep/
_opam
_build/
*.install
......@@ -5,6 +5,9 @@ stages:
variables:
CPU_CORES: "10"
OCAML: "ocaml-variants.4.14.0+options ocaml-option-flambda"
# Avoid needlessly increasing our TCB with native_compute
COQEXTRAFLAGS: "-native-compiler no"
.only_branches: &only_branches
only:
......@@ -41,48 +44,46 @@ variables:
## Build jobs
build-coq.8.14.0:
# The newest version runs with timing.
build-coq.8.20.1:
<<: *template
variables:
OPAM_PINS: "coq version 8.14.0"
MANGLE_NAMES: "1"
CI_COQCHK: "1"
OPAM_PINS: "coq version 8.20.1"
DENY_WARNINGS: "1"
build-coq.8.13.2:
<<: *template
interruptible: false
variables:
OPAM_PINS: "coq version 8.13.2"
MANGLE_NAMES: "1"
DENY_WARNINGS: "1"
CI_COQCHK: "1"
OPAM_PKG: "1"
DOC_DIR: "coqdoc@center.mpi-sws.org:stdpp"
tags:
- fp-timing
interruptible: false
# Separate MR job that does not run on fp-timing.
build-coq.8.13.2-mr:
# The newest version also runs in MRs, without timing.
build-coq.8.20.1-mr:
<<: *template
<<: *only_mr
variables:
OPAM_PINS: "coq version 8.13.2"
MANGLE_NAMES: "1"
OPAM_PINS: "coq version 8.20.1"
DENY_WARNINGS: "1"
MANGLE_NAMES: "1"
build-coq.8.12.2:
# Also ensure Dune works.
build-coq.8.20.1-dune:
<<: *template
variables:
OPAM_PINS: "coq version 8.12.2"
DENY_WARNINGS: "1"
OPAM_PINS: "coq version 8.20.1 dune version 3.15.2"
MAKE_TARGET: "dune"
build-coq.8.11.2:
build-coq.8.19.1:
<<: *template
variables:
OPAM_PINS: "coq version 8.11.2"
OPAM_PINS: "coq version 8.19.1"
DENY_WARNINGS: "1"
build-coq.8.10.2:
# The oldest version runs in MRs, without name mangling.
build-coq.8.18.0:
<<: *template
<<: *branches_and_mr
variables:
OPAM_PINS: "coq version 8.10.2"
OPAM_PINS: "coq version 8.18.0"
DENY_WARNINGS: "1"
......@@ -3,6 +3,595 @@ API-breaking change is listed.
## std++ master
- Add `disj_union_list` and associated lemmas for `gmultiset`. (by Marijn van Wezel)
- Add lemma `lookup_total_fmap`.
- Add lemmas about `last` and `head`: `last_app_Some`, `last_app_None`,
`head_app_Some`, `head_app_None` and `head_app`. (by Marijn van Wezel)
- Add tactic `notypeclasses apply` that works like `notypeclasses refine` but
automatically adds `_` until the given lemma takes no more arguments.
- Rename `map_filter_empty_iff` to `map_empty_filter` and add
`map_empty_filter_1` and `map_empty_filter_2`. (by Michael Sammler)
- Add lemma about `zip_with`: `lookup_zip_with_None` and add lemmas for `zip`:
`length_zip`, `zip_nil_inv`, `lookup_zip_Some`,`lookup_zip_None`. (by Kimaya Bedarkar)
- Add `elem_of_seq` and `seq_nil`. (by Kimaya Bedarkar)
- Add lemmas `StronglySorted_app`, `StronglySorted_cons` and
`StronglySorted_app_2`. Rename lemmas
`elem_of_StronglySorted_app``StronglySorted_app_1_elem_of`,
`StronglySorted_app_inv_l``StronglySorted_app_1_l`
`StronglySorted_app_inv_r``StronglySorted_app_1_r`. (by Marijn van Wezel)
- Add `SetUnfoldElemOf` instance for `dom` on `gmultiset`. (by Marijn van Wezel)
The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
Note that the script is not idempotent, do not run it twice.
```
sed -i -E -f- $(find theories -name "*.v") <<EOF
# length
s/\bmap_filter_empty_iff\b/map_empty_filter/g
# StronglySorted
s/\belem_of_StronglySorted_app\b/StronglySorted_app_1_elem_of/g
s/\bStronglySorted_app_inv_(l|r)\b/StronglySorted_app_1_\1/g
EOF
```
## std++ 1.11.0 (2024-10-30)
The highlights of this release include:
* support for building with dune
* stronger versions of the induction principles for `map_fold`, exposing the order in
which elements are processed
std++ 1.11 supports Coq 8.18, 8.19 and 8.20.
Coq 8.16 and 8.17 are no longer supported.
This release of std++ was managed by Jesper Bengtson, Ralf Jung,
and Robbert Krebbers, with contributions from Andres Erbsen, Lennard Gäher,
Léo Stefanesco, Marijn van Wezel, Paolo G. Giarrusso, Pierre Roux,
Ralf Jung, Robbert Krebbers, Rodolphe Lepigre, Sanjit Bhat, Yannick Zakowski,
and Yiyun Liu. Thanks a lot to everyone involved!
**Detailed list of changes:**
- Generalize `foldr_comm_acc`, `map_fold_comm_acc`, `set_fold_comm_acc`, and
`gmultiset_set_fold_comm_acc` to have more general type. (by Yannick Zakowski)
- Strengthen `map_disjoint_difference_l` and `map_disjoint_difference_l`, and
thereby make them consistent with the corresponding lemmas for sets.
- Add support for compiling the packages with dune. (by Rodolphe Lepigre)
- Add lemmas `gset_to_gmap_singleton`, `difference_union_intersection`,
`difference_union_intersection_L`. (by Léo Stefanesco)
- Make the build script compatible with BSD systems. (by Yiyun Liu)
- Rename lemmas `X_length` into `length_X`, see the sed script below for an
overview. This follows https://github.com/coq/coq/pull/18564.
- Redefine `map_imap` so its closure argument can contain recursive
occurrences of a `Fixpoint`.
- Add lemma `fmap_insert_inv`.
- Rename `minimal_exists` to `minimal_exists_elem_of` and
`minimal_exists_L` to `minimal_exists_elem_of_L`.
Add new `minimal_exists` lemma. (by Lennard Gäher)
- Generalize `map_relation R P Q` to have the key (extra argument `K`) in the
predicates `R`, `P` and `Q`.
- Generalize `map_included R` to a predicate `R : K → A → B → Prop`, i.e., (a)
to have the key, and (b) to have different types `A` and `B`.
- Add `map_Forall2` and some basic lemmas about it.
- Rename `map_not_Forall2` into `map_not_relation`.
- Replace the induction principle `map_fold_ind` for `map_fold` with a stronger
version:
+ The main new induction principle is `map_first_key_ind`, which is meant
to be used together with the lemmas `map_fold_insert_first_key` and
`map_to_list_insert_first_key` (and others about `map_first_key`). This
induction scheme reflects all these operations (induction, `map_fold`,
`map_to_list`) process the map in the same order.
+ The new primitive induction principle `map_fold_fmap_ind` is only relevant
for implementers of `FinMap` instances.
+ The lemma `map_fold_foldr` has been strengthened to (a) drop the
commutativity requirement and (b) give an equality (`=`) instead of being
generic over a relation `R`.
+ The lemma `map_to_list_fmap` has been strengthened to give an equality (`=`)
instead of a permutation (`≡ₚ`).
+ The lemmas `map_fold_comm_acc_strong` and `map_fold_comm_acc` have been
strengthened to only require commutativity w.r.t. the operation being
pulled out of the accumulator, not commutativity of
the folded function itself.
- Add lemmas `Sorted_unique_strong` and `StronglySorted_unique_strong` that only
require anti-symmetry for the elements that are in the list.
- Rename `foldr_cons_permute` into `foldr_cons_permute_strong` and strengthen
(a) from function `f : A → A → A` to `f : A → B → B`, and (b) to only require
associativity/commutativity for the elements that are in the list.
- Rename `foldr_cons_permute_eq` into `foldr_cons_permute`.
- Various improvements to the support of strings:
+ Add string literal notation "my string" to `std_scope`, and no longer
globally open `string_scope`.
+ Move all definitions and lemmas about strings/ascii into the modules
`String`/`Ascii`, i.e., rename `string_rev_app``String.rev_app`,
`string_rev``String.rev`, `is_nat``Ascii.is_nat`,
`is_space``Ascii.is_space` and `words``String.words`.
+ The file `std.strings` no longer exports the `String` module, it only
exports the `string` type, its constructors, induction principles, and
notations (in `string_scope`). Similar to the number types (`nat`, `N`,
`Z`), importing the `String` module yourself is discouraged, rather use
`String.function` and `String.lemma`.
+ Add `String.le` and some theory about it (decidability, proof irrelevance,
total order).
- Add lemmas `foldr_idemp_strong` and `foldr_idemp`.
- Add lemmas `set_fold_union_strong` and `set_fold_union`.
- Add lemmas `map_fold_union_strong`, `map_fold_union`,
`map_fold_disj_union_strong`, `map_fold_disj_union` and `map_fold_proper`.
- Add `gmultiset_map` and associated lemmas. (by Marijn van Wezel)
- Add `CProd` type class for Cartesian products; with instances for `list`,
`gset`, `boolset`, `MonadSet` (i.e., `propset`, `listset`); and `set_solver`
tactic support. (by Thibaut Pérami)
The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
Note that the script is not idempotent, do not run it twice.
```
sed -i -E -f- $(find theories -name "*.v") <<EOF
# length
s/\bnil_length\b/length_nil/g
s/\bcons_length\b/length_cons/g
s/\bapp_length\b/length_app/g
s/\bmap_to_list_length\b/length_map_to_list/g
s/\bseq_length\b/length_seq/g
s/\bseqZ_length\b/length_seqZ/g
s/\bjoin_length\b/length_join/g
s/\bZ_to_little_endian_length\b/length_Z_to_little_endian/g
s/\balter_length\b/length_alter/g
s/\binsert_length\b/length_insert/g
s/\binserts_length\b/length_inserts/g
s/\breverse_length\b/length_reverse/g
s/\btake_length\b/length_take/g
s/\btake_length_le\b/length_take_le/g
s/\btake_length_ge\b/length_take_ge/g
s/\bdrop_length\b/length_drop/g
s/\breplicate_length\b/length_replicate/g
s/\bresize_length\b/length_resize/g
s/\brotate_length\b/length_rotate/g
s/\breshape_length\b/length_reshape/g
s/\bsublist_alter_length\b/length_sublist_alter/g
s/\bmask_length\b/length_mask/g
s/\bfilter_length\b/length_filter/g
s/\bfilter_length_lt\b/length_filter_lt/g
s/\bfmap_length\b/length_fmap/g
s/\bmapM_length\b/length_mapM/g
s/\bset_mapM_length\b/length_set_mapM/g
s/\bimap_length\b/length_imap/g
s/\bzip_with_length\b/length_zip_with/g
s/\bzip_with_length_l\b/length_zip_with_l/g
s/\bzip_with_length_l_eq\b/length_zip_with_l_eq/g
s/\bzip_with_length_r\b/length_zip_with_r/g
s/\bzip_with_length_r_eq\b/length_zip_with_r_eq/g
s/\bzip_with_length_same_l\b/length_zip_with_same_l/g
s/\bzip_with_length_same_r\b/length_zip_with_same_r/g
s/\bnatset_to_bools_length\b/length_natset_to_bools/g
s/\bvec_to_list_length\b/length_vec_to_list/g
s/\bfresh_list_length\b/length_fresh_list/g
s/\bbv_to_little_endian_length\b/length_bv_to_little_endian/g
s/\bbv_seq_length\b/length_bv_seq/g
s/\bbv_to_bits_length\b/length_bv_to_bits/g
# renaming of minimal_exists
s/\bminimal_exists_L\b/minimal_exists_elem_of_L/g
s/\bminimal_exists\b/minimal_exists_elem_of/g
# map_relation
s/\bmap_not_Forall2\b/map_not_relation/g
# map_fold
s/\bmap_fold_ind2\b/map_fold_weak_ind/g
# foldr_cons_permute
s/\bfoldr_cons_permute\b/foldr_cons_permute_strong/g
s/\bfoldr_cons_permute_eq\b/foldr_cons_permute/g
# strings
s/\bstring_rev_app\b/String.rev_app/g
s/\bstring_rev\b/String.rev/g
s/\bis_nat\b/Ascii.is_nat/g
s/\bis_space\b/Ascii.is_space/g
s/\bwords\b/String.words/g
EOF
```
## std++ 1.10.0 (2024-04-12)
The highlight of this release is the bitvector library with support for
fixed-size integers. It is distributed as a separate package,
`coq-stdpp-bitvector`. The library is developed and maintained by Michael
Sammler.
std++ 1.10 supports Coq 8.18 and 8.19.
Coq 8.16 and 8.17 are no longer supported.
This release of std++ was managed by Ralf Jung and Robbert Krebbers, with
contributions from Mathias Adam Møller, Michael Sammler, Pierre Rousselin,
Pierre Roux, and Thibaut Pérami. Thanks a lot to everyone involved!
**Detailed list of changes:**
- Add `TCSimpl` type class that is similar to `TCEq` but performs `simpl`
before proving the goal by reflexivity.
- Add new typeclass `MThrow E M` to generally represent throwing an error of
type `E` in monad `M`. (by Thibaut Pérami and Mathias Adam Møller)
As a consequence:
+ Replace `MGuard` with `MThrow` and define `guard` in terms of `MThrow`.
+ The new `guard` is an ordinary function, while the old guard was a notation.
Hence, use the monadic bind to compose guards. For example, write
`guard P;; m`/`p ← guard P; m` instead of `guard P; m`/`guard P as p; m`.
+ Replace the tactic `case_option_guard` with a more general `case_guard`
version.
- Equip `solve_proper` with support for subrelations. When the goal is `R x y`
and an assumption `R' x y` is found, we search for an instance of
`SolveProperSubrelation R' R` and if we find one, that finishes the proof.
- Remove `wf` alias for the standard `well_founded`.
- Add lemmas `Nat.lt_wf_0_projected`, `N.lt_wf_0_projected`, `Z.lt_wf_projected`
for easy measure/size induction.
- Add `inv` tactic as a more well-behaved alternative to `inversion_clear`
(inspired by CompCert), and `oinv` as its version on open terms.
These tactics support both named hypotheses (`inv H`) and using a number
to refer to a hypothesis on the goal (`inv 1`).
- Add `prod_swap : A * B → B * A` and some basic theory about it.
- Add lemma `join_app`.
- Allow patterns and type annotations in `propset` notation, e.g.,
`{[ (x, y) : nat * nat | x = y ]}`. (by Thibaut Pérami)
- Add `inv select` and `inversion select` tactics that allow selecting the
to-be-inverted hypothesis with a pattern.
- The new `coq-stdpp-bitvector` package contains a library for `n`-bit
bitvectors (i.e., fixed-size integers with `n` bits).
Users of the previous unstable version need to change the import path from
`stdpp.unstable.bitvector` to `stdpp.bitvector.definitions` and from
`stdpp.unstable.bitvector_tactics` to `stdpp.bitvector.tactics`. The
complete library can be imported with `stdpp.bitvector.bitvector`.
(by Michael Sammler)
The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
Note that the script is not idempotent, do not run it twice.
```
sed -i -E -f- $(find theories -name "*.v") <<EOF
# well_founded
s/\bwf\b/well_founded/g
EOF
```
## std++ 1.9.0 (2023-10-11)
This highlights of this release are:
* `gmap` and related types are re-implemented based on Appel and Leroy's
[Efficient Extensional Binary Tries](https://inria.hal.science/hal-03372247),
making them usable in nested inductive definitions and improving
extensionality. More information can be found in Robbert Krebbers' Coq
Workshop talk, see https://coq-workshop.gitlab.io/2023/
* New tactics `ospecialize`, `odestruct`, `oinversion` etc are added. These
tactics improve upon `efeed` / `edestruct` by allowing one to leave more terms
open when specializing arguments. For instance, `odestruct (H _ x)` will turn
the `_` into an evar rather than trying to infer it immediately, making it
usable in many situations where `edestruct` fails. This can significantly
shorten the overhead involved in forward reasoning proofs. For more
information, see the test cases provided here:
https://gitlab.mpi-sws.org/iris/stdpp/-/blob/master/tests/tactics.v#L114
std++ 1.9 supports Coq 8.16 to 8.18. Coq 8.12 to 8.15 are no longer supported.
This release of std++ was managed by Ralf Jung, Robbert Krebbers, and Johannes
Hostert, with contributions from Dorian Lesbre, Herman Bergwerf, Ike Mulder,
Isaak van Bakel, Jan-Oliver Kaiser, Jonas Kastberg, Marijn van Wezel, Michael
Sammler, Paolo Giarrusso, Tej Chajed, and Thibaut Pérami. Thanks a lot to
everyone involved!
**Detailed list of changes:**
- Rename `difference_difference``difference_difference_l` and
`difference_difference_L``difference_difference_l_L`, add
`difference_difference_r` and `difference_difference_r_L`.
- Let `set_solver` use `eauto` (instead of `idtac`) as its default solver.
- Add tactic `tc_solve` (this was `iSolveTC` in Iris).
- Change `f_equiv` to use `reflexivity` in a way similar to `f_equal`. That is,
let `f_equiv` solve goals and subgoals of the form `R x x`. However, we use
a restricted `fast_reflexivity` as full `reflexivity` can be quite expensive.
- Rename `loopup_total_empty``lookup_total_empty`.
- Let `naive_solver tac` fail if `tac` creates new evars. Before it would
succeed with a proof that contains unresolved evars/shelved goals.
- Add lemmas `Nat.mul_reg_{l,r}` for cancellation of multiplication on `nat`.
(Names are analogous to the `Z.` lemmas for Coq's standard library.)
- Rename `map_preimage` into `map_preimg` to be consistent with `dom`.
- Improve `bijective_finite`: do not require an inverse, do not unnecessarily
remove duplicates.
- Add operation `*:` for "scalar" multiplication of multisets.
- Add `by` parameter to `multiset_solver`, which defaults to `eauto`.
- Add `map_img` operator for map image/codomain and some lemmas about it. (by
Dorian Lesbre)
- Remove `Permutation_alt`, `submseteq_Permutation_length_le`, and
`submseteq_Permutation_length_eq`; use `submseteq_length_Permutation` instead.
- Remove `map_to_list_length` (which seemed to be an unneeded auxiliary lemma);
use `map_subset_size` instead.
- Rename `prefix_lookup``prefix_lookup_Some`.
- Extend `set_solver` with support for `set_Forall` and `set_Exists`.
- Change `lookup_union` lemma statement to use `∪` on maps instead of `union_with`.
- Add `set_omap` function for finite sets and associated lemmas. (by Dorian
Lesbre)
- Add proof that `vec` is `Finite`. (by Herman Bergwerf.)
- Add `min` and `max` infix notations for `positive`.
- Add lemma `map_zip_fst_snd`.
- Add `stdpp.ssreflect` to provide compatibility with the ssreflect tactics.
- Set `simpl never` for `Pos` and `N` operations (similar to `Z`).
- Add `Intersection` instance for `option`. (by Marijn van Wezel)
- Add `lookup_intersection` lemma for the distributivity of lookup on an
intersection. (by Marijn van Wezel)
- Add lemmas `map_filter_or` and `map_filter_and` for the union and intersection
of filters on maps. (by Marijn van Wezel)
- Set `Hint Mode Equiv !`; this might need some type annotations for ambiguous
uses of `≡`.
- Set `intuition_solver ::= auto` (the default is `auto with *`) instead of
redeclaring `intuition`.
- Rename `option_union_Some``union_Some`, and strengthen it to become a
biimplication.
- Provide new implementations of `gmap`/`gset`, `Pmap`/`Pset`, `Nmap`/`Nset` and
`Zmap`/`Zset` based on the "canonical" version of binary tries by Appel and
Leroy (see https://inria.hal.science/hal-03372247) that avoid the use of Sigma
types. This has several benefits:
+ Maps enjoy more definitional equalities, because they are no longer equipped
with a proof of canonicity. This means more equalities can be proved by
`reflexivity` or even by conversion as part of unification. For example,
`{[ 1 := 1; 2 := 2 ]} = {[ 2 := 2; 1 := 1 ]}` and `{[ 1 ]} ∖ {[ 1 ]} = ∅`
hold definitionally.
+ Maps can be used in nested recursive definitions. For example,
`Inductive gtest := GTest : gmap nat gtest → gtest`. (The old map types
would violate Coq's strict positivity condition due to the Sigma type.)
- Make `map_fold` a primitive of the `FinMap`, and derive `map_to_list` from it.
(`map_fold` used to be derived from `map_to_list`.) This makes it possible to
use `map_fold` in nested-recursive definitions on maps. For example,
`Fixpoint f (t : gtest) := let 'GTest ts := t in map_fold (λ _ t', plus (f t')) 1 ts`.
- Make `fin` number literal notations work with numbers above 10. (by Thibaut
Pérami)
- Bind `fin` type to `fin` scope, so function taking a `fin` as argument will
implicitly parse it in `fin` scope. (by Thibaut Pérami)
- Change premise `Equivalence` into `PreOrder` for `set_fold_proper`.
- Weaken `Proper` premises of `set_ind`, `set_fold_ind`, `set_fold_proper`. If
you use `solve_proper` to solve these premises, no change should be needed. If
you use a manual proof, you have to remove some `intros` and/or a `split`.
- Change `Params` of `lookup` and `lookup_total` from 4 to 5 to disable setoid
rewriting in the key argument. If you have `Proper ((=) ==> R ==> S) lookup`,
you should change that to `∀ k, Proper (R ==> S) (lookup k)`.
- Add lemmas for moving functions in and out of fold operations across data
structures: new lemmas exist for sets, gmultisets, finite maps, and lists.
(by Isaac van Bakel)
+ For the above structures, added lemmas which allow rewriting between
`g (fold f x s)` and `fold f (g x) s` for appropriately-chosen functions
`f`, `g` which commute.
+ For the above structures, add strong versions of the above lemmas that
relate `g (fold f x s)` and `fold f (g x) s` by any preorder respected by
`f`, `g` restricted to the elements of `s`.
+ Add `gmultiset_set_fold_disj_union_strong`, which generalizes
`gmultiset_set_fold_disj_union` to any preorder for appropriately-chosen
fold functions.
- Improve efficiency of `encode`/`decode` for `string` and `ascii`.
- Rename `equiv_Forall2``list_equiv_Forall2` and `equiv_option_Forall2`
`option_equiv_Forall2`. Add similar lemmas `list_eq_Forall2` and
`option_eq_Forall2` for `=` instead of `≡`.
- Rename `fmap_inj``list_fmap_eq_inj` and `option_fmap_inj`
`option_fmap_eq_inj`. The new lemmas `list_fmap_inj`/`option_fmap_inj`
generalize injectivity to `Forall2`/`option_Forall2`.
- Generalize `set_map`, `set_bind`, `set_omap`, `map_to_set` and `map_img`
lemmas from `Set_` to `SemiSet`.
- Rename `sub_add'` to `add_sub'` for consistency with Coq's `add_sub` lemma.
- Rename `map_filter_lookup``map_lookup_filter` and
`map_filter_lookup_Some``map_lookup_filter_Some` and
`map_filter_lookup_None``map_lookup_filter_None`.
- Add `map_compose` operation, notation `m ∘ₘ n`, and associated lemmas.
(by Dorian Lesbre)
- Add `Assoc`, `Comm`, `LeftId`, `RightId`, `LeftAbsorb`, `RightAbsorb`
instances for number types.
- Add tactics `odestruct`, `oinversion`, `opose proof`, `ospecialize`,
`ogeneralize` that work with open terms. All `_` remaining after inference
will be turned into evars or subgoals using the same heuristic as `refine`.
For instance, with `H: ∀ n, P n → Q n`, `ospecialize (H _ _)` will create an
evar for `n` and open a subgoal for `P ?n`. `odestruct` is a more powerful
version of `edestruct` that does not require all `_` in the destructed term to
be immediately inferred.
- Replace `feed`/`efeed` tactics by variants of the `o` tactics that
automatically add extra `_` until there are no more leading `∀`/`→`. `efeed
tac` becomes `otac*`; the `feed` variants (that only specialize `→` but not
`∀`) are no longer provided.
- Add lemmas for `reverse` of `take`/`drop` and `take`/`drop` of `reverse`.
- Rework lemmas for `take`/`drop` of an `++`:
+ Add `take_app` and `drop_app`, which are the strongest versions, and use
`take_app_X` for derived versions.
+ Consistently use `'` suffix for version with premise `n = length`, and have
versions without `'` with `length` inlined.
+ Rename `take_app``take_app_length`, `take_app_alt``take_app_length'`,
`take_add_app``take_app_add'`, `take_app3_alt``take_app3_length'`,
`drop_app``drop_app_length`, `drop_app_alt``drop_app_length'`,
`drop_add_app``drop_app_add'`, `drop_app3_alt``drop_app3_length'`.
- Add instance `cons_equiv_inj`.
**Changes in `stdpp_unstable`:**
- Add bitvector number literal notations. (by Thibaut Pérami)
The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
Note that the script is not idempotent, do not run it twice.
```
sed -i -E -f- $(find theories -name "*.v") <<EOF
s/\bdifference_difference(|_L)\b/difference_difference_l\1/g
s/\bloopup_total_empty\b/lookup_total_empty/g
# map_preimg
s/\bmap_preimage/map_preimg/g
s/\blookup_preimage/lookup_preimg/g
s/\blookup_total_preimage/lookup_total_preimg/g
# union_Some
s/\boption_union_Some\b/union_Some/g
# prefix_lookup
s/\bprefix_lookup\b/prefix_lookup_Some/g
# Forall2
s/\bequiv_Forall2\b/list_equiv_Forall2/g
s/\bequiv_option_Forall2\b/option_equiv_Forall2/g
s/\bfmap_inj\b/list_fmap_eq_inj/g
s/\boption_fmap_inj\b/option_fmap_eq_inj/g
# add_sub
s/\bsub_add'\b/add_sub'/g
# map filter
s/\bmap_filter_lookup/map_lookup_filter/g
# take/drop app
s/\b(take|drop)_app\b/\1_app_length/g
s/\b(take|drop)_app_alt\b/\1_app_length'/g
s/\b(take|drop)_add_app\b/\1_app_add'/g
s/\b(take|drop)_app3_alt\b/\1_app3_length'/g
EOF
```
## std++ 1.8.0 (2022-08-18)
Coq 8.16 is newly supported by this release, and Coq 8.12 to 8.15 remain
supported. Coq 8.11 is no longer supported.
This release of std++ was managed by Ralf Jung, Robbert Krebbers, and Lennard
Gäher, with contributions from Andrej Dudenhefner, Dan Frumin, Gregory Malecha,
Jan-Oliver Kaiser, Lennard Gäher, Léo Stefanesco, Michael Sammler, Paolo G. Giarrusso,
Ralf Jung, Robbert Krebbers, and Vincent Siles. Thanks a lot to everyone involved!
- Make sure that `gset` and `mapset` do not bump the universe.
- Rewrite `tele_arg` to make it not bump universes. (by Gregory Malecha, BedRock
Systems)
- Change `dom D M` (where `D` is the domain type) to `dom M`; the domain type is
now inferred automatically. To make this possible, getting the domain of a
`gmap` as a `coGset` and of a `Pmap` as a `coPset` is no longer supported. Use
`gset_to_coGset`/`Pset_to_coPset` instead.
When combining `dom` with `≡`, this can run into an old issue (due to a Coq
issue, `Equiv` does not the desired `Hint Mode !`), which can make it
necessary to annotate the set type at the `≡` via `≡@{D}`.
- Rename "unsealing" lemmas from `_eq` to `_unseal`. This affects `ndot_eq` and
`nclose_eq`. These unsealing lemmas are internal, so in principle you should
not rely on them.
- Declare `Hint Mode` for `FinSet A C` so that `C` is input, and `A` is output
(i.e., inferred from `C`).
- Add function `map_preimage` to compute the preimage of a finite map.
- Rename `map_disjoint_subseteq``kmap_subseteq` and
`map_disjoint_subset``kmap_subset`.
- Add `map_Exists` as an analogue to `map_Forall`. (by Michael Sammler)
- Add `case_match eqn:H` that behaves like `case_match` but allows naming the
generated equality. (by Michael Sammler)
- Flip direction of `map_disjoint_fmap`.
- Add `map_agree` as a weaker version of `##ₘ` which requires the maps to agree
on keys contained in both maps. (by Michael Sammler)
- Rename `lookup_union_l``lookup_union_l'` and add `lookup_union_l`
as the dual to `lookup_union_r`.
- Add `map_seqZ` as the `Z` analogue of `map_seq`. (by Michael Sammler)
- Add the `coq-stdpp-unstable` package for libraries that are not
deemed stable enough to be included in the main std++ library,
following the `coq-iris-unstable` package. This library is contained
in the `stdpp_unstable` folder. The `theories` folder was renamed
to `stdpp`.
- Add an unstable `bitblast` tactic for solving equalities between integers
involving bitwise operations. (by Michael Sammler)
- Add the bind operation `set_bind` for finite sets. (by Dan Frumin and Paolo G.
Giarrusso)
- Change `list_fmap_ext` and `list_fmap_equiv_ext` to require equality on the
elements of the list, not on all elements of the carrier type. This change
makes these lemmas consistent with those for maps.
- Use the modules `Nat`, `Pos`, `N`, `Z`, `Nat2Z`, `Z2Nat`, `Nat2N`, `Pos2Nat`,
`SuccNat2Pos`, and `N2Z` for our extended results on number types. Before,
we prefixed our the std++ lemmas with `Nat_` or `nat_`, but now you refer
to them with `Nat.`, similar to the way you refer to number lemmas from Coq's
standard library.
- Use a module `Qp` for our positive rationals library. You now refer to `Qp`
lemmas using `Qp.lem` instead of `Qp_lem`.
- Rename `_plus`/`_minus` into `_add`/`_sub` to be consistent with Coq's current
convention for numbers. See the sed script below for an exact list of renames.
- Refactor the `feed` and `efeed` tactics. In particular, improve the
documentation of `(e)feed` tactics, rename the primitive `(e)feed`
tactic to `(e)feed_core`, make the syntax of `feed_core` consistent
with `efeed_core`, remove the `by` parameter of `efeed_core`, and add
`(e)feed generalize`, `efeed inversion`, and `efeed destruct`.
The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
Note that the script is not idempotent, do not run it twice.
```
sed -i -E -f- $(find theories -name "*.v") <<EOF
s/\bmap_disjoint_subseteq\b/kmap_subseteq/g
s/\bmap_disjoint_subset\b/kmap_subset/g
s/\blookup_union_l\b/lookup_union_l'/g
# number modules --- note that this might rename your own lemmas
# start with Nat_/N_/Z_/Qp_/P(app|reverse|length|dup)_ too eagerly.
# Also the list of names starting with nat_ is not complete.
s/\bNat_/Nat\./g
s/\bNat.iter_S(|_r)\b/Nat.iter_succ\1/g
s/\bP(app|reverse|length|dup)/Pos\.\1/g
s/\bPlt_sum\b/Pos\.lt_sum/g
s/\bPos\.reverse_Pdup\b/Pos\.reverse_Pdup/g
s/\bnat_(le_sum|eq_dec|lt_pi)\b/Nat\.\1/g
s/\bN_/N\./g
s/\bZ_/Z\./g
s/\bZ\.scope\b/Z_scope/g
s/\bN\.scope\b/N_scope/g
s/\Z\.of_nat_complete\b/Z_of_nat_complete/g
s/\bZ\.of_nat_inj\b/Nat2Z.inj/g
s/\bZ2Nat_/Z2Nat\./g
s/\bNat2Z_/Nat2Z\./g
s/\bQp_/Qp\./g
s/\bQp\.1_1/Qp\.add_1_1/g
# plus → add
s/\bfin_plus_inv\b/fin_add_inv/g
s/\bfin_plus_inv_L\b/fin_add_inv_l/g
s/\bfin_plus_inv_R\b/fin_add_inv_r/g
s/\bset_seq_plus\b/set_seq_add/g
s/\bset_seq_plus_L\b/set_seq_add_L/g
s/\bset_seq_plus_disjoint\b/set_seq_add_disjoint/g
s/\bnsteps_plus_inv\b/nsteps_add_inv/g
s/\bbsteps_plus_r\b/bsteps_add_r/g
s/\bbsteps_plus_l\b/bsteps_add_l/g
s/\btake_plus_app\b/take_add_app/g
s/\breplicate_plus\b/replicate_add/g
s/\btake_replicate_plus\b/take_replicate_add/g
s/\bdrop_replicate_plus\b/drop_replicate_add/g
s/\bresize_plus\b/resize_add/g
s/\bresize_plus_eq\b/resize_add_eq/g
s/\btake_resize_plus\b/take_resize_add/g
s/\bdrop_resize_plus\b/drop_resize_add/g
s/\bdrop_plus_app\b/drop_add_app/g
s/\bMakeNatPlus\b/MakeNatAdd/g
s/\bmake_nat_plus\b/make_nat_add/g
s/\bnat_minus_plus\b/Nat\.sub_add/g
s/\bnat_le_plus_minus\b/Nat\.le_add_sub/g
EOF
```
## std++ 1.7.0 (2022-01-22)
Coq 8.15 is newly supported by this release, and Coq 8.11 to 8.14 remain
supported. Coq 8.10 is no longer supported.
This release of std++ was managed by Ralf Jung, Robbert Krebbers, and Tej
Chajed, with contributions from Glen Mével, Jonas Kastberg Hinrichsen, Matthieu
Sozeau, Michael Sammler, Ralf Jung, Robbert Krebbers, and Tej Chajed. Thanks a
lot to everyone involved!
- Add `is_closed_term` tactic for determining whether a term depends on variables bound
in the context. (by Michael Sammler)
- Add `list.zip_with_take_both` and `list.zip_with_take_both'`
- Specialize `list.zip_with_take_{l,r}`, add generalized lemmas `list.zip_with_take_{l,r}'`
- Add `bool_to_Z` that converts true to 1 and false to 0. (by Michael Sammler)
- Add lemmas for lookup on `mjoin` for lists. (by Michael Sammler)
- Rename `Is_true_false``Is_true_false_2` and `eq_None_ne_Some``eq_None_ne_Some_1`.
- Rename `decide_iff``decide_ext` and `bool_decide_iff``bool_decide_ext`.
- Remove a spurious `Global Arguments Pos.of_nat : simpl never`.
- Add tactics `destruct select <pat>` and `destruct select <pat> as <intro_pat>`.
- Add some more lemmas about `Finite` and `pred_finite`.
- Add lemmas about `last`: `last_app_cons`, `last_app`, `last_Some`, and
`last_Some_elem_of`.
- Add versions of Pigeonhole principle for Finite types, natural numbers, and
lists.
The following `sed` script should perform most of the renaming
(on macOS, replace `sed` by `gsed`, installed via e.g. `brew install gnu-sed`).
Note that the script is not idempotent, do not run it twice.
```
sed -i -E -f- $(find theories -name "*.v") <<EOF
s/\bIs_true_false\b/Is_true_false_2/g
s/\beq_None_ne_Some\b/eq_None_ne_Some_1/g
# bool decide
s/\b(bool_|)decide_iff\b/\1decide_ext/g
EOF
```
## std++ 1.6.0 (2021-11-05)
Coq 8.14 is newly supported by this release, and Coq 8.10 to 8.13 remain
......
......@@ -3,6 +3,12 @@ all: Makefile.coq
+@$(MAKE) -f Makefile.coq all
.PHONY: all
# Build with dune.
# This exists only for CI; you should just call `dune build` directly instead.
dune:
@dune build --display=short
.PHONY: dune
# Permit local customization
-include Makefile.local
......
......@@ -4,6 +4,11 @@ NO_TEST:=
# use MAKE_REF=1 to generate new reference files
MAKE_REF:=
# Only test reference output on known versions of Coq, to avoid blocking
# Coq CI when they change the printing a little.
# Need to make this a lazy variable (`=` instead of `:=`) since COQ_VERSION is only set later.
COQ_REF=$(shell echo "$(COQ_VERSION)" | grep -E "^8\.(20)\." -q && echo 1)
# Run tests interleaved with main build. They have to be in the same target for this.
real-all: style $(if $(NO_TEST),,test)
......@@ -11,7 +16,7 @@ style: $(VFILES) coq-lint.sh
# Make sure everything imports the options, and some general linting.
$(SHOW)"COQLINT"
$(HIDE)for FILE in $(VFILES); do \
if ! fgrep -q 'From stdpp Require Import options.' "$$FILE"; then echo "ERROR: $$FILE does not import 'options'."; echo; exit 1; fi ; \
if ! grep -F -q 'From stdpp Require Import options.' "$$FILE"; then echo "ERROR: $$FILE does not import 'options'."; echo; exit 1; fi ; \
./coq-lint.sh "$$FILE" || exit 1; \
done
.PHONY: style
......@@ -24,8 +29,6 @@ test: $(TESTFILES:.v=.vo)
.PHONY: test
COQ_TEST=$(COQTOP) $(COQDEBUG) -batch -test-mode
# Need to make this a lazy variable (`=` instead of `:=`) since COQ_VERSION is only set later.
COQ_MINOR_VERSION=$(shell echo "$(COQ_VERSION)" | egrep '^[0-9]+\.[0-9]+\b' -o)
tests/.coqdeps.d: $(TESTFILES)
$(SHOW)'COQDEP TESTFILES'
......@@ -35,21 +38,22 @@ tests/.coqdeps.d: $(TESTFILES)
# Main test script (comments out-of-line because macOS otherwise barfs?!?)
# - Determine reference file (`REF`).
# - Print user-visible status line.
# - unset env vars that change Coq's output
# - Dump Coq output into a temporary file.
# - Run `sed -i` on that file in a way that works on macOS.
# - Either compare the result with the reference file, or move it over the reference file.
# - Cleanup, and mark as done for make.
$(TESTFILES:.v=.vo): %.vo: %.v $(if $(MAKE_REF),,%.ref) $(NORMALIZER)
$(HIDE)if test -f $*".$(COQ_MINOR_VERSION).ref"; then \
REF=$*".$(COQ_MINOR_VERSION).ref"; \
else \
REF=$*".ref"; \
fi && \
echo "COQTEST$(if $(MAKE_REF), [make ref],) $< (ref: $$REF)" && \
$(HIDE)REF=$*".ref" && \
echo "COQTEST$(if $(COQ_REF),$(if $(MAKE_REF), [make ref],), [ref ignored]) $< (ref: $$REF)" && \
TMPFILE="$$(mktemp)" && \
unset OCAMLRUNPARAM && \
$(TIMER) $(COQ_TEST) $(COQFLAGS) $(COQLIBS) -load-vernac-source $< > "$$TMPFILE" && \
sed -f $(NORMALIZER) "$$TMPFILE" > "$$TMPFILE".new && \
sed -E -f $(NORMALIZER) "$$TMPFILE" > "$$TMPFILE".new && \
mv "$$TMPFILE".new "$$TMPFILE" && \
$(if $(MAKE_REF),mv "$$TMPFILE" "$$REF",diff --strip-trailing-cr -u "$$REF" "$$TMPFILE") && \
$(if $(COQ_REF),\
$(if $(MAKE_REF),mv "$$TMPFILE" "$$REF",diff --strip-trailing-cr -u "$$REF" "$$TMPFILE"), \
true \
) && \
rm -f "$$TMPFILE" && \
touch $@
......@@ -26,26 +26,27 @@ Importing std++ has some side effects as the library sets some global options.
Notably:
* `Generalizable All Variables`: This option enables implicit generalization in
arguments of the form `` `{...}`` (i.e., anonymous arguments). Unfortunately, it
also enables implicit generalization in `Instance`. We think that the fact
that both behaviors are coupled together is a
[bug in Coq](https://github.com/coq/coq/issues/6030).
arguments of the form `` `{...}`` (i.e., anonymous arguments) and in terms of
shape `` `{}``/`` `[]``/`` `()``. See [Coq's
manual](https://coq.inria.fr/distrib/current/refman/language/extensions/implicit-arguments.html#implicit-generalization)
for further details.
* The behavior of `Program` is tweaked: `Unset Transparent Obligations`,
`Obligation Tactic := idtac`, `Add Search Blacklist "_obligation_"`. See
[`base.v`](theories/base.v) for further details.
* It blocks `simpl` on all operations involving integers `Z` (by setting
`Arguments op : simpl never`). We do this because `simpl` tends to expose
the internals of said operations (e.g. try `simpl` on `Z.of_nat (S n) + y`).
As a consequence of blocking `simpl`, due to
[Coq bug #5039](https://github.com/coq/coq/issues/5039) the `omega` tactic
becomes unreliable. We do not consider this an issue since we use `lia` (for
which the aforementioned Coq bug was fixed) instead of `omega` everywhere.
* It blocks `simpl` on all operations involving `Z`, `N`, and `positive` (by
setting `Arguments op : simpl never`). We do this because `simpl` tends to
expose the internals of said operations (e.g. try `simpl` on `Z.of_nat (S n) + y`).
* It sets `intuition_solver` to `auto`. The default is `auto with *`, which is
very expensive.
## Prerequisites
This version is known to compile with:
- Coq version 8.10.2 / 8.11.2 / 8.12.2 / 8.13.2 / 8.14.0
- Coq version 8.18.0 / 8.19.1 / 8.20.1
Generally we always aim to support the last two stable Coq releases. Support for
older versions will be dropped when it is convenient.
## Installing via opam
......@@ -65,6 +66,19 @@ To obtain a development version, add the Iris opam repository:
Run `make -jN` in this directory to build the library, where `N` is the number
of your CPU cores. Then run `make install` to install the library.
## Unstable libraries
The `stdpp_unstable` folder contains a set of libraries that are not
deemed stable enough to be included in the main std++ library. These
libraries are available via the `coq-stdpp-unstable` opam package. For
each library, there is a corresponding "tracking issue" in the std++
issue tracker (also linked from the library itself) which tracks the
work that still needs to be done before moving the library to std++.
No stability guarantees whatsoever are made for this package.
Note that the unstable package is not released, so it only exists in the
development version of std++.
## Contributing to std++
If you want to report a bug, please use the
......@@ -79,9 +93,12 @@ your account. Then you can fork the
[Coq-std++ git repository](https://gitlab.mpi-sws.org/iris/stdpp), make your
changes in your fork, and create a merge request.
Please refer to [our style guide](https://gitlab.mpi-sws.org/iris/iris/-/blob/master/docs/style_guide.md)
for code formatting and naming policies.
## Common problems
On Windows, differences in line endings may cause tests to fail. This can be
On Windows, differences in line endings may cause tests to fail. This can be
fixed by setting Git's autocrlf option to true:
git config --global core.autocrlf true
-Q theories stdpp
# 'Global Hint Rewrite' not supported before Coq 8.14.
-arg -w -arg -deprecated-hint-rewrite-without-locality
# Fixing this one requires Coq 8.15.
-arg -w -arg -deprecated-typeclasses-transparency-without-locality
# Search paths for all packages. They must all match the regex
# `-Q $PACKAGE[/ ]` so that we can filter out the right ones for each package.
-Q stdpp stdpp
-Q stdpp_bitvector stdpp.bitvector
-Q stdpp_unstable stdpp.unstable
theories/options.v
theories/base.v
theories/tactics.v
theories/option.v
theories/fin_map_dom.v
theories/boolset.v
theories/fin_maps.v
theories/fin.v
theories/vector.v
theories/pmap.v
theories/stringmap.v
theories/fin_sets.v
theories/mapset.v
theories/proof_irrel.v
theories/hashset.v
theories/pretty.v
theories/countable.v
theories/orders.v
theories/natmap.v
theories/strings.v
theories/well_founded.v
theories/relations.v
theories/sets.v
theories/listset.v
theories/streams.v
theories/gmap.v
theories/gmultiset.v
theories/prelude.v
theories/listset_nodup.v
theories/finite.v
theories/numbers.v
theories/nmap.v
theories/zmap.v
theories/coPset.v
theories/coGset.v
theories/lexico.v
theories/propset.v
theories/decidable.v
theories/list.v
theories/list_numbers.v
theories/functions.v
theories/hlist.v
theories/sorting.v
theories/infinite.v
theories/nat_cancel.v
theories/namespaces.v
theories/telescopes.v
theories/binders.v
# Custom flags (to be kept in sync with the dune file at the root of the repo).
# Fixing this one requires Coq 8.19
-arg -w -arg -argument-scope-delimiter
# Warning seems incorrect, see https://gitlab.mpi-sws.org/iris/stdpp/-/issues/216
-arg -w -arg -notation-incompatible-prefix
# We can't do this migration yet until we require Coq 9.0
-arg -w -arg -deprecated-from-Coq
-arg -w -arg -deprecated-dirpath-Coq
stdpp/options.v
stdpp/base.v
stdpp/tactics.v
stdpp/option.v
stdpp/fin_map_dom.v
stdpp/boolset.v
stdpp/fin_maps.v
stdpp/fin.v
stdpp/vector.v
stdpp/pmap.v
stdpp/stringmap.v
stdpp/fin_sets.v
stdpp/mapset.v
stdpp/proof_irrel.v
stdpp/hashset.v
stdpp/pretty.v
stdpp/countable.v
stdpp/orders.v
stdpp/natmap.v
stdpp/strings.v
stdpp/well_founded.v
stdpp/relations.v
stdpp/sets.v
stdpp/listset.v
stdpp/streams.v
stdpp/gmap.v
stdpp/gmultiset.v
stdpp/prelude.v
stdpp/listset_nodup.v
stdpp/finite.v
stdpp/numbers.v
stdpp/nmap.v
stdpp/zmap.v
stdpp/coPset.v
stdpp/coGset.v
stdpp/lexico.v
stdpp/propset.v
stdpp/decidable.v
stdpp/list.v
stdpp/list_numbers.v
stdpp/functions.v
stdpp/hlist.v
stdpp/sorting.v
stdpp/infinite.v
stdpp/nat_cancel.v
stdpp/namespaces.v
stdpp/telescopes.v
stdpp/binders.v
stdpp/ssreflect.v
stdpp_bitvector/definitions.v
stdpp_bitvector/tactics.v
stdpp_bitvector/bitvector.v
stdpp_unstable/bitblast.v
......@@ -4,7 +4,7 @@ set -e
FILE="$1"
if egrep -n '^\s*((Existing\s+|Program\s+|Declare\s+)?Instance|Arguments|Remove|Hint\s+(Extern|Constructors|Resolve|Immediate|Mode|Opaque|Transparent|Unfold)|(Open|Close)\s+Scope|Opaque|Transparent)\b' "$FILE"; then
if grep -E -n '^\s*((Existing\s+|Program\s+|Declare\s+)?Instance|Arguments|Remove|Hint\s+(Extern|Constructors|Resolve|Immediate|Mode|Opaque|Transparent|Unfold|Rewrite)|(Open|Close)\s+Scope|Opaque|Transparent|Typeclasses (Opaque|Transparent))\b' "$FILE"; then
echo "ERROR: $FILE contains 'Instance'/'Arguments'/'Hint' or another side-effect without locality (see above)."
echo "Please add 'Global' or 'Local' as appropriate."
echo
......
opam-version: "2.0"
maintainer: "Ralf Jung <jung@mpi-sws.org>"
authors: "The std++ team"
license: "BSD-3-Clause"
homepage: "https://gitlab.mpi-sws.org/iris/stdpp"
bug-reports: "https://gitlab.mpi-sws.org/iris/stdpp/issues"
dev-repo: "git+https://gitlab.mpi-sws.org/iris/stdpp.git"
version: "dev"
synopsis: "A library for bitvectors based on std++"
description: """
This library provides the `bv n` type for representing n-bit bitvectors (i.e.,
fixed-size integers with n bits). It comes with definitions for the standard operations
(e.g., the operations exposed by SMT-LIB) and some basic automation for solving bitvector
goals based on the lia tactic.
"""
tags: [
"logpath:stdpp.bitvector"
]
depends: [
"coq-stdpp" {= version}
]
build: ["./make-package" "stdpp_bitvector" "-j%{jobs}%"]
install: ["./make-package" "stdpp_bitvector" "install"]
opam-version: "2.0"
maintainer: "Ralf Jung <jung@mpi-sws.org>"
authors: "The std++ team"
license: "BSD-3-Clause"
homepage: "https://gitlab.mpi-sws.org/iris/stdpp"
bug-reports: "https://gitlab.mpi-sws.org/iris/stdpp/issues"
dev-repo: "git+https://gitlab.mpi-sws.org/iris/stdpp.git"
version: "dev"
synopsis: "Unfinished std++ libraries"
description: """
This package contains libraries that have been proposed for inclusion in std++, but more
work is needed before they are ready for this.
"""
tags: [
"logpath:stdpp.unstable"
]
depends: [
"coq-stdpp" {= version}
"coq-stdpp-bitvector" {= version}
]
build: ["./make-package" "stdpp_unstable" "-j%{jobs}%"]
install: ["./make-package" "stdpp_unstable" "install"]
......@@ -33,8 +33,8 @@ tags: [
]
depends: [
"coq" { (>= "8.10.2" & < "8.15~") | (= "dev") }
"coq" { (>= "8.18" & < "9.1~") | (= "dev") }
]
build: [make "-j%{jobs}%"]
install: [make "install"]
build: ["./make-package" "stdpp" "-j%{jobs}%"]
install: ["./make-package" "stdpp" "install"]
Support for the dune build system
=================================
**NOTE:** in case of problem with the dune build, you can ask @lepigre or
@Blaisorblade for help.
The library can be built using dune by running `dune build`. Note that `dune`
needs to be installed separately with `opam install dune`, as it is currently
not part of the dependencies of the project.
Useful links:
- [dune documentation](https://dune.readthedocs.io)
- [coq zulip channel](https://coq.zulipchat.com/#narrow/stream/240550-Dune-devs-.26-users)
Editor support
--------------
Good dune support in editors is lacking at the moment, but there are tricks you
can play to make it work.
One option is to configure your editor to invoke the `dune coq top` command
instead of `coqtop`, but that is not easy to configure.
Another option is to change the `_CoqProject` file to something like:
```
-Q stdpp stdpp
-Q _build/default/stdpp stdpp
-Q stdpp_bitvector stdpp.bitvector
-Q _build/default/stdpp_bitvector stdpp.bitvector
-Q stdpp_unstable stdpp.unstable
-Q _build/default/stdpp_unstable stdpp.unstable
```
Note that this includes two bindings for each logical path: a binding to a
folder in the source tree (where editors will find the `.v` files), and a
binding to the same folder under `_build/default` (where editors will find
the corresponding `.vo` files). The binding for a source folder must come
before the binding for the corresponding build folder, so that editors know
to jump to source files in the source tree (and not their read-only copy in
the build folder).
If you do this, you still need to invoke `dune` manually to make sure that the
dependencies of the file you are stepping through are up-to-date. To build a
single file, you can do, e.g., `dune build stdpp/options.vo`. To build only
the `stdpp` folder, you can do `dune build stdpp`.
(env
(_ ; Applies to all profiles (dev, release, ...).
(coq
(flags ; Configure the coqc flags.
(:standard ; Keeping the default flags.
; Add custom flags (to be kept in sync with _CoqProject).
-w -argument-scope-delimiter
-w -notation-incompatible-prefix)))))
(lang dune 3.8)
(using coq 0.8)
#!/bin/sh
set -e
# Helper script to build and/or install just one package out of this repository.
# Assumes that all the other packages it depends on have been installed already!
# Make sure we get a GNU version of make.
# This is exactly how opam determines which make executable to use.
OS=$(uname)
MAKE="make"
if [ $OS == "FreeBSD" ] || [ $OS == "OpenBSD" ] ||\
[ $OS == "NetBSD" ] || [ $OS == "DragonFly" ]; then
MAKE="gmake"
fi
PROJECT="$1"
shift
COQFILE="_CoqProject.$PROJECT"
MAKEFILE="Makefile.package.$PROJECT"
if ! grep -E -q "^$PROJECT/" _CoqProject; then
echo "No files in $PROJECT/ found in _CoqProject; this does not seem to be a valid project name."
exit 1
fi
# Generate _CoqProject file and Makefile
rm -f "$COQFILE"
# Get the right "-Q" line.
grep -E "^-Q $PROJECT[ /]" _CoqProject >> "$COQFILE"
# Get everything until the first empty line except for the "-Q" lines.
sed -n '/./!q;p' _CoqProject | grep -E -v "^-Q " >> "$COQFILE"
# Get the files.
grep -E "^$PROJECT/" _CoqProject >> "$COQFILE"
# Now we can run coq_makefile.
"${COQBIN}coq_makefile" -f "$COQFILE" -o "$MAKEFILE"
# Run build
$MAKE -f "$MAKEFILE" "$@"
# Cleanup
rm -f ".$MAKEFILE.d" "$MAKEFILE"*
......@@ -12,6 +12,10 @@ From Coq Require Export Morphisms RelationClasses List Bool Setoid Peano Utf8.
From Coq Require Import Permutation.
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
(* notations _.1 and _.2 below, TODO: remove when requiring Coq > 8.19 *)
From Coq.ssr Require Import (notations) ssrfun.
From stdpp Require Import options.
(** This notation is necessary to prevent [length] from being printed
......@@ -44,19 +48,36 @@ Global Unset Transparent Obligations.
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
Obligation Tactic := idtac.
Global Obligation Tactic := idtac.
(** 3. Hide obligations from the results of the [Search] commands. *)
(** 3. Hide obligations and unsealing lemmas from the results of the [Search]
commands. *)
Add Search Blacklist "_obligation_".
Add Search Blacklist "_unseal".
(** * Sealing off definitions *)
Section seal.
Local Set Primitive Projections.
Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
End seal.
#[projections(primitive=yes)]
Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
Global Arguments unseal {_ _} _ : assert.
Global Arguments seal_eq {_ _} _ : assert.
(** * Solving type class instances *)
(** The tactic [tc_solve] is used to solve type class goals by invoking type
class search. It is similar to [apply _], but it is more robust since it does
not affect unrelated goals/evars due to https://github.com/coq/coq/issues/6583.
The tactic [tc_solve] is particularly useful when building custom tactics that
need tight control over when type class search is invoked. In Iris, many of the
proof mode tactics make use of [notypeclasses refine] and use [tc_solve] to
manually invoke type class search.
Note that [typeclasses eauto] is multi-success. That means, whenever subsequent
tactics fail, it will backtrack to [typeclasses eauto] to try the next type
class instance. This is almost always undesired and can lead to poor performance
and horrible error messages. Hence, we wrap it in a [once]. *)
Ltac tc_solve :=
solve [once (typeclasses eauto)].
(** * Non-backtracking type classes *)
(** The type class [TCNoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
......@@ -70,8 +91,9 @@ issue #6714.
See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
Class TCNoBackTrack (P : Prop) := { tc_no_backtrack : P }.
Global Hint Extern 0 (TCNoBackTrack _) => constructor; apply _ : typeclass_instances.
Class TCNoBackTrack (P : Prop) := TCNoBackTrack_intro { tc_no_backtrack : P }.
Global Hint Extern 0 (TCNoBackTrack _) =>
notypeclasses refine (TCNoBackTrack_intro _ _); tc_solve : typeclass_instances.
(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
......@@ -84,14 +106,14 @@ Inductive TCIf (P Q R : Prop) : Prop :=
Existing Class TCIf.
Global Hint Extern 0 (TCIf _ _ _) =>
first [apply TCIf_true; [apply _|]
|apply TCIf_false] : typeclass_instances.
first [notypeclasses refine (TCIf_true _ _ _ _ _); [tc_solve|]
|notypeclasses refine (TCIf_false _ _ _ _)] : typeclass_instances.
(** * Typeclass opaque definitions *)
(** The constant [tc_opaque] is used to make definitions opaque for just type
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Typeclasses Opaque tc_opaque.
Global Typeclasses Opaque tc_opaque.
Global Arguments tc_opaque {_} _ /.
(** Below we define type class versions of the common logical operators. It is
......@@ -177,10 +199,12 @@ Global Existing Instance TCElemOf_here.
Global Existing Instance TCElemOf_further.
Global Hint Mode TCElemOf ! ! ! : typeclass_instances.
(** We declare both arguments [x] and [y] of [TCEq x y] as outputs, which means
[TCEq] can also be used to unify evars. This is harmless: since the only
instance of [TCEq] is [TCEq_refl] below, it can never cause loops. See
https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case. *)
(** The intended use of [TCEq x y] is to use [x] as input and [y] as output, but
this is not enforced. We use output mode [-] (instead of [!]) for [x] to ensure
that type class search succeed on goals like [TCEq (if ? then e1 else e2) ?y],
see https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case.
Mode [-] is harmless, the only instance of [TCEq] is [TCEq_refl] below, so we
cannot create loops. *)
Inductive TCEq {A} (x : A) : A Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Global Existing Instance TCEq_refl.
......@@ -189,6 +213,20 @@ Global Hint Mode TCEq ! - - : typeclass_instances.
Lemma TCEq_eq {A} (x1 x2 : A) : TCEq x1 x2 x1 = x2.
Proof. split; destruct 1; reflexivity. Qed.
(** The [TCSimpl x y] type class is similar to [TCEq] but performs [simpl]
before proving the goal by reflexivity. Similar to [TCEq], the argument [x]
is the input and [y] the output. When solving [TCEq x y], the argument [x]
should be a concrete term and [y] an evar for the [simpl]ed result. *)
Class TCSimpl {A} (x x' : A) := TCSimpl_TCEq : TCEq x x'.
Global Hint Extern 0 (TCSimpl _ _) =>
(* Since the second argument should be an evar, we can call [simpl] on the
whole goal. *)
simpl; notypeclasses refine (TCEq_refl _) : typeclass_instances.
Global Hint Mode TCSimpl ! - - : typeclass_instances.
Lemma TCSimpl_eq {A} (x1 x2 : A) : TCSimpl x1 x2 x1 = x2.
Proof. apply TCEq_eq. Qed.
Inductive TCDiag {A} (C : A Prop) : A A Prop :=
| TCDiag_diag x : C x TCDiag C x x.
Existing Class TCDiag.
......@@ -247,8 +285,17 @@ Proof. split; repeat intro; congruence. Qed.
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
(* No Hint Mode set because of Coq bug #14441.
Global Hint Mode Equiv ! : typeclass_instances. *)
Global Hint Mode Equiv ! : typeclass_instances.
(** We instruct setoid rewriting to infer [equiv] as a relation on
type [A] when needed. This allows setoid_rewrite to solve constraints
of shape [Proper (eq ==> ?R) f] using [Proper (eq ==> (equiv (A:=A))) f]
when an equivalence relation is available on type [A]. We put this instance
at level 150 so it does not take precedence over Coq's stdlib instances,
favoring inference of [eq] (all Coq functions are automatically morphisms
for [eq]). We have [eq] (at 100) < [≡] (at 150) < [⊑] (at 200). *)
Global Instance equiv_rewrite_relation `{Equiv A} :
RewriteRelation (@equiv A _) | 150 := {}.
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
Infix "≡@{ A }" := (@equiv A _)
......@@ -270,9 +317,13 @@ Notation "X ≢@{ A } Y":= (¬X ≡@{ A } Y)
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x y x = y.
Global Hint Mode LeibnizEquiv ! - : typeclass_instances.
reverse.
Various std++ tactics assume that this class is only instantiated if [≡]
is an equivalence relation. *)
Class LeibnizEquiv A `{Equiv A} :=
leibniz_equiv (x y : A) : x y x = y.
Global Hint Mode LeibnizEquiv ! ! : typeclass_instances.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (≡@{A})} (x y : A) :
x y x = y.
......@@ -303,7 +354,8 @@ Global Instance: Params (@equiv) 2 := {}.
(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Global Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3 := {}.
Global Instance equiv_default_relation `{Equiv A} :
DefaultRelation (≡@{A}) | 3 := {}.
Global Hint Extern 0 (_ _) => reflexivity : core.
Global Hint Extern 0 (_ _) => symmetry; assumption : core.
......@@ -331,7 +383,7 @@ an explicit class instead of a notation for two reasons:
Using the [RelDecision], the [f] is hidden under a lambda, which prevents
unnecessary evaluation. *)
Class RelDecision {A B} (R : A B Prop) :=
decide_rel x y :> Decision (R x y).
decide_rel x y :: Decision (R x y).
Global Hint Mode RelDecision ! ! ! : typeclass_instances.
Global Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
Notation EqDecision A := (RelDecision (=@{A})).
......@@ -359,7 +411,7 @@ Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
(S : relation C) (f : A B C) : Prop :=
inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2) R1 x1 y1 R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A B) (g : B A) : Prop :=
cancel : x, S (f (g x)) x.
cancel x : S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A B) :=
surj y : x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A A A) : Prop :=
......@@ -461,14 +513,14 @@ Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y ∧ ¬R Y X
Global Instance: Params (@strict) 2 := {}.
Class PartialOrder {A} (R : relation A) : Prop := {
partial_order_pre :> PreOrder R;
partial_order_anti_symm :> AntiSymm (=) R
partial_order_pre :: PreOrder R;
partial_order_anti_symm :: AntiSymm (=) R
}.
Global Hint Mode PartialOrder ! ! : typeclass_instances.
Class TotalOrder {A} (R : relation A) : Prop := {
total_order_partial :> PartialOrder R;
total_order_trichotomy :> Trichotomy (strict R)
total_order_partial :: PartialOrder R;
total_order_trichotomy :: Trichotomy (strict R)
}.
Global Hint Mode TotalOrder ! ! : typeclass_instances.
......@@ -572,7 +624,7 @@ Global Arguments id _ _ / : assert.
Global Arguments compose _ _ _ _ _ _ / : assert.
Global Arguments flip _ _ _ _ _ _ / : assert.
Global Arguments const _ _ _ _ / : assert.
Typeclasses Transparent id compose flip const.
Global Typeclasses Transparent id compose flip const.
Definition fun_map {A A' B B'} (f: A' A) (g: B B') (h : A B) : A' B' :=
g h f.
......@@ -596,17 +648,17 @@ Proof.
destruct (surj f y) as [z ?]. exists z. congruence.
Qed.
Global Instance id_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Global Instance const2_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Global Instance id_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Global Instance const2_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance const1_assoc {A} : Assoc (=) (λ x _ : A, x).
Global Instance id1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance const2_assoc {A} : Assoc (=) (λ _ x : A, x).
Global Instance id2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance const1_idemp {A} : IdemP (=) (λ x _ : A, x).
Global Instance id1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Global Instance const2_idemp {A} : IdemP (=) (λ _ x : A, x).
Global Instance id2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.
(** ** Lists *)
......@@ -642,8 +694,18 @@ Lemma orb_True b1 b2 : b1 || b2 ↔ b1 ∨ b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false ¬b.
Proof. now intros -> ?. Qed.
Lemma Is_true_true (b : bool) : b b = true.
Proof. now destruct b. Qed.
Lemma Is_true_true_1 (b : bool) : b b = true.
Proof. apply Is_true_true. Qed.
Lemma Is_true_true_2 (b : bool) : b = true b.
Proof. apply Is_true_true. Qed.
Lemma Is_true_false (b : bool) : ¬ b b = false.
Proof. now destruct b; simpl. Qed.
Lemma Is_true_false_1 (b : bool) : ¬b b = false.
Proof. apply Is_true_false. Qed.
Lemma Is_true_false_2 (b : bool) : b = false ¬b.
Proof. apply Is_true_false. Qed.
(** ** Unit *)
Global Instance unit_equiv : Equiv unit := λ _ _, True.
......@@ -664,19 +726,14 @@ Proof. intros [] []; reflexivity. Qed.
Notation "( x ,.)" := (pair x) (only parsing) : stdpp_scope.
Notation "(., y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
Notation "p .1" := (fst p) (at level 2, left associativity, format "p .1").
Notation "p .2" := (snd p) (at level 2, left associativity, format "p .2").
Notation "p .1" := (fst p).
Notation "p .2" := (snd p).
Global Instance: Params (@pair) 2 := {}.
Global Instance: Params (@fst) 2 := {}.
Global Instance: Params (@snd) 2 := {}.
(** The Coq standard library swapped the names of curry/uncurry, see
https://github.com/coq/coq/pull/12716/
FIXME: Remove this workaround once the lowest Coq version we support is 8.13. *)
Notation curry := prod_uncurry.
Global Instance: Params (@curry) 3 := {}.
Notation uncurry := prod_curry.
Global Instance: Params (@uncurry) 3 := {}.
Definition uncurry3 {A B C D} (f : A B C D) (p : A * B * C) : D :=
......@@ -695,12 +752,18 @@ Global Instance: Params (@curry4) 5 := {}.
Definition prod_map {A A' B B'} (f: A A') (g: B B') (p : A * B) : A' * B' :=
(f (p.1), g (p.2)).
Global Instance: Params (@prod_map) 4 := {}.
Global Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
Definition prod_zip {A A' A'' B B' B''} (f : A A' A'') (g : B B' B'')
(p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Global Instance: Params (@prod_zip) 6 := {}.
Global Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
Definition prod_swap {A B} (p : A * B) : B * A := (p.2, p.1).
Global Arguments prod_swap {_ _} !_ /.
Global Instance: Params (@prod_swap) 2 := {}.
Global Instance prod_inhabited {A B} (iA : Inhabited A)
(iB : Inhabited B) : Inhabited (A * B) :=
match iA, iB with populate x, populate y => populate (x,y) end.
......@@ -723,6 +786,11 @@ Lemma uncurry4_curry4 {A B C D E} (f : A * B * C * D → E) p :
uncurry4 (curry4 f) p = f p.
Proof. destruct p as [[[??] ?] ?]; reflexivity. Qed.
(** [pair_eq] as a name is more consistent with our usual naming. *)
Lemma pair_eq {A B} (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) a1 = a2 b1 = b2.
Proof. apply pair_equal_spec. Qed.
Global Instance pair_inj {A B} : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Global Instance prod_map_inj {A A' B B'} (f : A A') (g : B B') :
......@@ -732,6 +800,14 @@ Proof.
[apply (inj f)|apply (inj g)]; congruence.
Qed.
Global Instance prod_swap_cancel {A B} :
Cancel (=) (@prod_swap A B) (@prod_swap B A).
Proof. intros [??]; reflexivity. Qed.
Global Instance prod_swap_inj {A B} : Inj (=) (=) (@prod_swap A B).
Proof. apply cancel_inj. Qed.
Global Instance prod_swap_surj {A B} : Surj (=) (@prod_swap A B).
Proof. apply cancel_surj. Qed.
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
relation (A * B) := λ x y, R1 (x.1) (y.1) R2 (x.2) (y.2).
......@@ -760,6 +836,10 @@ Section prod_relation.
Global Instance snd_proper' : Proper (prod_relation RA RB ==> RB) snd.
Proof. firstorder eauto. Qed.
Global Instance prod_swap_proper' :
Proper (prod_relation RA RB ==> prod_relation RB RA) prod_swap.
Proof. firstorder eauto. Qed.
Global Instance curry_proper' `{RC : relation C} :
Proper ((prod_relation RA RB ==> RC) ==> RA ==> RB ==> RC) curry.
Proof. firstorder eauto. Qed.
......@@ -780,7 +860,7 @@ Section prod_relation.
Proper ((prod_relation (prod_relation (prod_relation RA RB) RC) RD ==> RE) ==>
RA ==> RB ==> RC ==> RD ==> RE) curry4.
Proof. firstorder eauto. Qed.
Global Instance uncurry5_proper' `{RC : relation C, RD : relation D, RE : relation E} :
Global Instance uncurry4_proper' `{RC : relation C, RD : relation D, RE : relation E} :
Proper ((RA ==> RB ==> RC ==> RD ==> RE) ==>
prod_relation (prod_relation (prod_relation RA RB) RC) RD ==> RE) uncurry4.
Proof.
......@@ -804,6 +884,9 @@ Section prod_setoid.
Global Instance fst_proper : Proper ((≡@{A*B}) ==> ()) fst := _.
Global Instance snd_proper : Proper ((≡@{A*B}) ==> ()) snd := _.
Global Instance prod_swap_proper :
Proper ((≡@{A*B}) ==> (≡@{B*A})) prod_swap := _.
Global Instance curry_proper `{Equiv C} :
Proper (((≡@{A*B}) ==> (≡@{C})) ==> () ==> () ==> ()) curry := _.
Global Instance uncurry_proper `{Equiv C} :
......@@ -822,9 +905,13 @@ Section prod_setoid.
Global Instance uncurry4_proper `{Equiv C, Equiv D, Equiv E} :
Proper ((() ==> () ==> () ==> () ==> ()) ==>
(≡@{A*B*C*D}) ==> (≡@{E})) uncurry4 := _.
Lemma pair_equiv (a1 a2 : A) (b1 b2 : B) :
(a1, b1) (a2, b2) a1 a2 b1 b2.
Proof. reflexivity. Qed.
End prod_setoid.
Typeclasses Opaque prod_equiv.
Global Typeclasses Opaque prod_equiv.
Global Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} :
LeibnizEquiv (A * B).
......@@ -883,7 +970,7 @@ Global Instance inl_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@inl
Global Instance inr_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@inr A B) := _.
Global Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inl A B) := _.
Global Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj () () (@inr A B) := _.
Typeclasses Opaque sum_equiv.
Global Typeclasses Opaque sum_equiv.
(** ** Option *)
Global Instance option_inhabited {A} : Inhabited (option A) := populate None.
......@@ -963,6 +1050,15 @@ Notation "(.∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : stdpp_scope.
(** The operation [cprod X Y] gives the Cartesian product of set-like structures
[X] and [Y], i.e., [cprod X Y := { (x,y) | x ∈ X, y ∈ Y }]. The implementation/
instance depends on the representation of the set. *)
Class CProd A B C := cprod : A B C.
Global Hint Mode CProd ! ! - : typeclass_instances.
Global Instance: Params (@cprod) 4 := {}.
(** We do not have a notation for [cprod] (yet) since this operation seems
not commonly enough used. *)
Class Singleton A B := singleton: A B.
Global Hint Mode Singleton - ! : typeclass_instances.
Global Instance: Params (@singleton) 3 := {}.
......@@ -1026,6 +1122,11 @@ Notation "(⊎)" := disj_union (only parsing) : stdpp_scope.
Notation "( x ⊎.)" := (disj_union x) (only parsing) : stdpp_scope.
Notation "(.⊎ x )" := (λ y, disj_union y x) (only parsing) : stdpp_scope.
Definition disj_union_list `{Empty A} `{DisjUnion A} : list A A := fold_right () ∅.
Global Arguments disj_union_list _ _ _ !_ / : assert.
(* There is no "big" version of [⊎] in unicode, we thus use [⋃+]. *)
Notation "⋃+ l" := (disj_union_list l) (at level 20, format "⋃+ l") : stdpp_scope.
Class SingletonMS A B := singletonMS: A B.
Global Hint Mode SingletonMS - ! : typeclass_instances.
Global Instance: Params (@singletonMS) 3 := {}.
......@@ -1042,6 +1143,18 @@ Fixpoint list_to_set `{Singleton A C, Empty C, Union C} (l : list A) : C :=
Fixpoint list_to_set_disj `{SingletonMS A C, Empty C, DisjUnion C} (l : list A) : C :=
match l with [] => | x :: l => {[+ x +]} list_to_set_disj l end.
Class ScalarMul N A := scalar_mul : N A A.
Global Hint Mode ScalarMul - ! : typeclass_instances.
(** The [N] arguments is typically [nat] or [Z], so we do not want to rewrite
in that. Hence, the value of [Params] is 3. *)
Global Instance: Params (@scalar_mul) 3 := {}.
(** The notation [*:] and level is taken from ssreflect, see
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/ssrnotations.v *)
Infix "*:" := scalar_mul (at level 40) : stdpp_scope.
Notation "(*:)" := scalar_mul (only parsing) : stdpp_scope.
Notation "( x *:.)" := (scalar_mul x) (only parsing) : stdpp_scope.
Notation "(.*: x )" := (λ y, scalar_mul y x) (only parsing) : stdpp_scope.
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
......@@ -1141,14 +1254,24 @@ Notation "ps .*1" := (fmap (M:=list) fst ps)
Notation "ps .*2" := (fmap (M:=list) snd ps)
(at level 2, left associativity, format "ps .*2").
Class MGuard (M : Type Type) :=
mguard: P {dec : Decision P} {A}, (P M A) M A.
Global Arguments mguard _ _ _ !_ _ _ / : assert.
Global Hint Mode MGuard ! : typeclass_instances.
Notation "'guard' P ; z" := (mguard P (λ _, z))
(at level 20, z at level 200, only parsing, right associativity) : stdpp_scope.
Notation "'guard' P 'as' H ; z" := (mguard P (λ H, z))
(at level 20, z at level 200, only parsing, right associativity) : stdpp_scope.
(** For any monad that has a builtin way to throw an exception/error *)
Class MThrow (E : Type) (M : Type Type) := mthrow : {A}, E M A.
Global Arguments mthrow {_ _ _ _} _ : assert.
Global Instance: Params (@mthrow) 4 := {}.
Global Hint Mode MThrow ! ! : typeclass_instances.
(** We use unit as the error content for monads that can only report an error
without any payload like an option *)
Global Notation MFail := (MThrow ()).
Global Notation mfail := (mthrow ()).
Definition guard_or {E} (e : E) `{MThrow E M, MRet M} P `{Decision P} : M P :=
match decide P with
| left H => mret H
| right _ => mthrow e
end.
Global Notation guard := (guard_or ()).
(** * Operations on maps *)
(** In this section we define operational type classes for the operations
......@@ -1156,7 +1279,7 @@ on maps. In the file [fin_maps] we will axiomatize finite maps.
The function look up [m !! k] should yield the element at key [k] in [m]. *)
Class Lookup (K A M : Type) := lookup: K M option A.
Global Hint Mode Lookup - - ! : typeclass_instances.
Global Instance: Params (@lookup) 4 := {}.
Global Instance: Params (@lookup) 5 := {}.
Notation "m !! i" := (lookup i m) (at level 20) : stdpp_scope.
Notation "(!!)" := lookup (only parsing) : stdpp_scope.
Notation "( m !!.)" := (λ i, m !! i) (only parsing) : stdpp_scope.
......@@ -1167,7 +1290,7 @@ Global Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch, assert.
of the partial [lookup] function. *)
Class LookupTotal (K A M : Type) := lookup_total : K M A.
Global Hint Mode LookupTotal - - ! : typeclass_instances.
Global Instance: Params (@lookup_total) 4 := {}.
Global Instance: Params (@lookup_total) 5 := {}.
Notation "m !!! i" := (lookup_total i m) (at level 20) : stdpp_scope.
Notation "(!!!)" := lookup_total (only parsing) : stdpp_scope.
Notation "( m !!!.)" := (λ i, m !!! i) (only parsing) : stdpp_scope.
......@@ -1193,8 +1316,8 @@ Global Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch, assert.
(* Defining a generic notation does not seem possible with Coq's
recursive notation system, so we define individual notations
for some cases relevant in practice. *)
(* The "format" makes sure that linebreaks are placed after the separating semicola [;] when printing. *)
(* TODO : we are using parantheses in the "de-sugaring" of the notation instead of [$] because Coq 8.12
(* The "format" makes sure that linebreaks are placed after the separating semicolons [;] when printing. *)
(* TODO : we are using parentheses in the "de-sugaring" of the notation instead of [$] because Coq 8.12
and earlier have trouble with using the notation for printing otherwise.
Once support for Coq 8.12 is dropped, this can be replaced with [$]. *)
Notation "{[ k1 := a1 ; k2 := a2 ]}" :=
......@@ -1270,7 +1393,7 @@ Global Arguments delete _ _ _ !_ !_ / : simpl nomatch, assert.
function [f], which is called with the original value. *)
Class Alter (K A M : Type) := alter: (A A) K M M.
Global Hint Mode Alter - - ! : typeclass_instances.
Global Instance: Params (@alter) 5 := {}.
Global Instance: Params (@alter) 4 := {}.
Global Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch, assert.
(** The function [partial_alter f k m] should update the value at key [k] using the
......@@ -1283,13 +1406,15 @@ Global Hint Mode PartialAlter - - ! : typeclass_instances.
Global Instance: Params (@partial_alter) 4 := {}.
Global Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch, assert.
(** The function [dom C m] should yield the domain of [m]. That is a finite
set of type [C] that contains the keys that are a member of [m]. *)
Class Dom (M C : Type) := dom: M C.
Global Hint Mode Dom ! ! : typeclass_instances.
(** The function [dom m] should yield the domain of [m]. That is a finite
set of type [D] that contains the keys that are a member of [m].
[D] is an output of the typeclass, i.e., there can be only one instance per map
type [M]. *)
Class Dom (M D : Type) := dom: M D.
Global Hint Mode Dom ! - : typeclass_instances.
Global Instance: Params (@dom) 3 := {}.
Global Arguments dom : clear implicits.
Global Arguments dom {_} _ {_} !_ / : simpl nomatch, assert.
Global Arguments dom {_ _ _} !_ / : simpl nomatch, assert.
(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
......@@ -1339,7 +1464,10 @@ Notation "(.⊑ y )" := (λ x, sqsubseteq x y) (only parsing) : stdpp_scope.
Infix "⊑@{ A }" := (@sqsubseteq A _) (at level 70, only parsing) : stdpp_scope.
Notation "(⊑@{ A } )" := (@sqsubseteq A _) (only parsing) : stdpp_scope.
Global Instance sqsubseteq_rewrite `{SqSubsetEq A} : RewriteRelation (⊑@{A}) := {}.
(** [sqsubseteq] does not take precedence over the stdlib's instances (like [eq],
[impl], [iff]) or std++'s [equiv].
We have [eq] (at 100) < [≡] (at 150) < [⊑] (at 200). *)
Global Instance sqsubseteq_rewrite `{SqSubsetEq A} : RewriteRelation (⊑@{A}) | 200 := {}.
Global Hint Extern 0 (_ _) => reflexivity : core.
......@@ -1388,7 +1516,7 @@ Global Hint Mode SemiSet - ! - - - - : typeclass_instances.
Class Set_ A C `{ElemOf A C, Empty C, Singleton A C,
Union C, Intersection C, Difference C} : Prop := {
set_semi_set :> SemiSet A C;
set_semi_set :: SemiSet A C;
elem_of_intersection (X Y : C) (x : A) : x X Y x X x Y;
elem_of_difference (X Y : C) (x : A) : x X Y x X x Y
}.
......@@ -1396,7 +1524,7 @@ Global Hint Mode Set_ - ! - - - - - - : typeclass_instances.
Class TopSet A C `{ElemOf A C, Empty C, Top C, Singleton A C,
Union C, Intersection C, Difference C} : Prop := {
top_set_set :> Set_ A C;
top_set_set :: Set_ A C;
elem_of_top' (x : A) : x ∈@{C} ; (* We prove [elem_of_top : x ∈@{C} ⊤ ↔ True]
in [sets.v], which is more convenient for rewriting. *)
}.
......@@ -1437,10 +1565,12 @@ Qed.
anyway so as to avoid cycles in type class search. *)
Class FinSet A C `{ElemOf A C, Empty C, Singleton A C, Union C,
Intersection C, Difference C, Elements A C, EqDecision A} : Prop := {
fin_set_set :> Set_ A C;
fin_set_set :: Set_ A C;
elem_of_elements (X : C) x : x elements X x X;
NoDup_elements (X : C) : NoDup (elements X)
}.
Global Hint Mode FinSet - ! - - - - - - - - : typeclass_instances.
Class Size C := size: C nat.
Global Hint Mode Size ! : typeclass_instances.
Global Arguments size {_ _} !_ / : simpl nomatch, assert.
......@@ -1459,7 +1589,7 @@ in a type constructor of type [Type → Type]. *)
Class MonadSet M `{ A, ElemOf A (M A),
A, Empty (M A), A, Singleton A (M A), A, Union (M A),
!MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
monad_set_semi_set A :> SemiSet A (M A);
monad_set_semi_set A :: SemiSet A (M A);
elem_of_bind {A B} (f : A M B) (X : M A) (x : B) :
x X ≫= f y, x f y y X;
elem_of_ret {A} (x y : A) : x ∈@{M A} mret y x = y;
......@@ -1470,17 +1600,17 @@ Class MonadSet M `{∀ A, ElemOf A (M A),
}.
(** The [Infinite A] class axiomatizes types [A] with infinitely many elements.
It contains a function [fresh : list A → A] that given a list [xs] gives an
It contains a function [fresh : list A → A] that, given a list [xs], gives an
element [fresh xs ∉ xs].
We do not directly make [fresh] a field of the [Infinite] class, but use a
separate operational type class [Fresh] for it. That way we can overload [fresh]
to pick fresh elements from other data structure like sets. See the file
to pick fresh elements from other data structures like sets. See the file
[fin_sets], where we define [fresh : C → A] for any finite set implementation
[FinSet C A].
Note: we require [fresh] to respect permutations, which is needed to define the
aforementioned [fresh] function on finite sets that respects set equality.
aforementioned [fresh] function on finite sets that respect set equality.
Instead of instantiating [Infinite] directly, consider using [max_infinite] or
[inj_infinite] from the [infinite] module. *)
......@@ -1490,9 +1620,9 @@ Global Instance: Params (@fresh) 3 := {}.
Global Arguments fresh : simpl never.
Class Infinite A := {
infinite_fresh :> Fresh A (list A);
infinite_fresh :: Fresh A (list A);
infinite_is_fresh (xs : list A) : fresh xs xs;
infinite_fresh_Permutation :> Proper (@Permutation A ==> (=)) fresh;
infinite_fresh_Permutation :: Proper (@Permutation A ==> (=)) fresh;
}.
Global Hint Mode Infinite ! : typeclass_instances.
Global Arguments infinite_fresh : simpl never.
......
File moved
......@@ -17,6 +17,10 @@ Global Instance boolset_intersection {A} : Intersection (boolset A) := λ X1 X2,
BoolSet (λ x, boolset_car X1 x && boolset_car X2 x).
Global Instance boolset_difference {A} : Difference (boolset A) := λ X1 X2,
BoolSet (λ x, boolset_car X1 x && negb (boolset_car X2 x)).
Global Instance boolset_cprod {A B} :
CProd (boolset A) (boolset B) (boolset (A * B)) := λ X1 X2,
BoolSet (λ x, boolset_car X1 x.1 && boolset_car X2 x.2).
Global Instance boolset_top_set `{EqDecision A} : TopSet A (boolset A).
Proof.
split; [split; [split| |]|].
......@@ -31,6 +35,19 @@ Qed.
Global Instance boolset_elem_of_dec {A} : RelDecision (∈@{boolset A}).
Proof. refine (λ x X, cast_if (decide (boolset_car X x))); done. Defined.
Typeclasses Opaque boolset_elem_of.
Lemma elem_of_boolset_cprod {A B} (X1 : boolset A) (X2 : boolset B) (x : A * B) :
x cprod X1 X2 x.1 X1 x.2 X2.
Proof. apply andb_True. Qed.
Global Instance set_unfold_boolset_cprod {A B} (X1 : boolset A) (X2 : boolset B) x P Q :
SetUnfoldElemOf x.1 X1 P SetUnfoldElemOf x.2 X2 Q
SetUnfoldElemOf x (cprod X1 X2) (P Q).
Proof.
intros ??; constructor.
by rewrite elem_of_boolset_cprod, (set_unfold_elem_of x.1 X1 P),
(set_unfold_elem_of x.2 X2 Q).
Qed.
Global Typeclasses Opaque boolset_elem_of.
Global Opaque boolset_empty boolset_singleton boolset_union
boolset_intersection boolset_difference.
boolset_intersection boolset_difference boolset_cprod.
......@@ -192,15 +192,5 @@ Lemma elem_of_coGset_to_top_set `{Countable A, TopSet A C} X x :
x ∈@{C} coGset_to_top_set X x X.
Proof. destruct X; set_solver. Qed.
(** * Domain of finite maps *)
Global Instance coGset_dom `{Countable K} {A} : Dom (gmap K A) (coGset K) := λ m,
gset_to_coGset (dom _ m).
Global Instance coGset_dom_spec `{Countable K} : FinMapDom K (gmap K) (coGset K).
Proof.
split; try apply _. intros B m i. unfold dom, coGset_dom.
by rewrite elem_of_gset_to_coGset, elem_of_dom.
Qed.
Typeclasses Opaque coGset_elem_of coGset_empty coGset_top coGset_singleton.
Typeclasses Opaque coGset_union coGset_intersection coGset_difference.
Typeclasses Opaque coGset_dom.
Global Typeclasses Opaque coGset_elem_of coGset_empty coGset_top coGset_singleton.
Global Typeclasses Opaque coGset_union coGset_intersection coGset_difference.
......@@ -30,6 +30,13 @@ Fixpoint coPset_wf (t : coPset_raw) : bool :=
end.
Global Arguments coPset_wf !_ / : simpl nomatch, assert.
Lemma coPNode_wf b l r :
coPset_wf l coPset_wf r
(l = coPLeaf true r = coPLeaf true b = true False)
(l = coPLeaf false r = coPLeaf false b = false False)
coPset_wf (coPNode b l r).
Proof. destruct b, l as [[]|], r as [[]|]; naive_solver. Qed.
Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) coPset_wf r.
......@@ -43,9 +50,9 @@ Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
| _, _, _ => coPNode b l r
end.
Global Arguments coPNode' : simpl never.
Lemma coPNode_wf b l r : coPset_wf l coPset_wf r coPset_wf (coPNode' b l r).
Lemma coPNode'_wf b l r : coPset_wf l coPset_wf r coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Global Hint Resolve coPNode_wf : core.
Global Hint Resolve coPNode'_wf : core.
Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
match t, p with
......@@ -221,7 +228,7 @@ Proof.
unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
- induction t as [b|b l IHl r IHr]; simpl.
{ destruct b; simpl; [intros [l Hl]|done].
by apply (is_fresh (list_to_set l : Pset)), elem_of_list_to_set, Hl. }
by apply (infinite_is_fresh l), Hl. }
intros [ll Hll]; rewrite andb_True; split.
+ apply IHl; exists (omap (maybe (~0)) ll); intros i.
rewrite elem_of_list_omap; intros; exists (i~0); auto.
......@@ -272,73 +279,91 @@ Proof.
Qed.
(** * Conversion to psets *)
Fixpoint coPset_to_Pset_raw (t : coPset_raw) : Pmap_raw () :=
Fixpoint coPset_to_Pset_raw (t : coPset_raw) : Pmap () :=
match t with
| coPLeaf _ => PLeaf
| coPNode false l r => PNode' None (coPset_to_Pset_raw l) (coPset_to_Pset_raw r)
| coPNode true l r => PNode (Some ()) (coPset_to_Pset_raw l) (coPset_to_Pset_raw r)
| coPLeaf _ => PEmpty
| coPNode false l r => pmap.PNode (coPset_to_Pset_raw l) None (coPset_to_Pset_raw r)
| coPNode true l r => pmap.PNode (coPset_to_Pset_raw l) (Some ()) (coPset_to_Pset_raw r)
end.
Lemma coPset_to_Pset_wf t : coPset_wf t Pmap_wf (coPset_to_Pset_raw t).
Proof. induction t as [|[]]; simpl; eauto using PNode_wf. Qed.
Definition coPset_to_Pset (X : coPset) : Pset :=
let (t,Ht) := X in Mapset (PMap (coPset_to_Pset_raw t) (coPset_to_Pset_wf _ Ht)).
let (t,Ht) := X in Mapset (coPset_to_Pset_raw t).
Lemma elem_of_coPset_to_Pset X i : set_finite X i coPset_to_Pset X i X.
Proof.
rewrite coPset_finite_spec; destruct X as [t Ht].
change (coPset_finite t coPset_to_Pset_raw t !! i = Some () e_of i t).
clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
simpl; rewrite ?andb_True, ?PNode_lookup; naive_solver.
simpl; rewrite ?andb_True, ?pmap.Pmap_lookup_PNode; naive_solver.
Qed.
(** * Conversion from psets *)
Fixpoint Pset_to_coPset_raw (t : Pmap_raw ()) : coPset_raw :=
match t with
| PLeaf => coPLeaf false
| PNode None l r => coPNode false (Pset_to_coPset_raw l) (Pset_to_coPset_raw r)
| PNode (Some _) l r => coPNode true (Pset_to_coPset_raw l) (Pset_to_coPset_raw r)
end.
Lemma Pset_to_coPset_wf t : Pmap_wf t coPset_wf (Pset_to_coPset_raw t).
Proof.
induction t as [|[] l IHl r IHr]; simpl; rewrite ?andb_True; auto.
- intros [??]; destruct l as [|[]], r as [|[]]; simpl in *; auto.
- destruct l as [|[]], r as [|[]]; simpl in *; rewrite ?andb_true_r;
rewrite ?andb_True; rewrite ?andb_True in IHl, IHr; intuition.
Definition Pset_to_coPset_raw_aux (go : Pmap_ne () coPset_raw)
(mt : Pmap ()) : coPset_raw :=
match mt with PNodes t => go t | PEmpty => coPLeaf false end.
Fixpoint Pset_ne_to_coPset_raw (t : Pmap_ne ()) : coPset_raw :=
pmap.Pmap_ne_case t $ λ ml mx mr,
coPNode match mx with Some _ => true | None => false end
(Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw ml)
(Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw mr).
Definition Pset_to_coPset_raw : Pmap () coPset_raw :=
Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw.
Lemma Pset_to_coPset_raw_PNode ml mx mr :
pmap.PNode_valid ml mx mr
Pset_to_coPset_raw (pmap.PNode ml mx mr) =
coPNode match mx with Some _ => true | None => false end
(Pset_to_coPset_raw ml) (Pset_to_coPset_raw mr).
Proof. by destruct ml, mx, mr. Qed.
Lemma Pset_to_coPset_raw_wf t : coPset_wf (Pset_to_coPset_raw t).
Proof.
induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
rewrite Pset_to_coPset_raw_PNode by done.
apply coPNode_wf; [done|done|..];
destruct mx; destruct ml using pmap.Pmap_ind; destruct mr using pmap.Pmap_ind;
rewrite ?Pset_to_coPset_raw_PNode by done; naive_solver.
Qed.
Lemma elem_of_Pset_to_coPset_raw i t : e_of i (Pset_to_coPset_raw t) t !! i = Some ().
Proof. by revert i; induction t as [|[[]|]]; intros []; simpl; auto; split. Qed.
Proof.
revert i. induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
intros []; rewrite Pset_to_coPset_raw_PNode,
pmap.Pmap_lookup_PNode by done; destruct mx as [[]|]; naive_solver.
Qed.
Lemma Pset_to_coPset_raw_finite t : coPset_finite (Pset_to_coPset_raw t).
Proof. induction t as [|[[]|]]; simpl; rewrite ?andb_True; auto. Qed.
Proof.
induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
rewrite Pset_to_coPset_raw_PNode by done. destruct mx; naive_solver.
Qed.
Definition Pset_to_coPset (X : Pset) : coPset :=
let 'Mapset (PMap t Ht) := X in Pset_to_coPset_raw t Pset_to_coPset_wf _ Ht.
let 'Mapset t := X in Pset_to_coPset_raw t Pset_to_coPset_raw_wf _.
Lemma elem_of_Pset_to_coPset X i : i Pset_to_coPset X i X.
Proof. destruct X as [[t ?]]; apply elem_of_Pset_to_coPset_raw. Qed.
Proof. destruct X; apply elem_of_Pset_to_coPset_raw. Qed.
Lemma Pset_to_coPset_finite X : set_finite (Pset_to_coPset X).
Proof.
apply coPset_finite_spec; destruct X as [[t ?]]; apply Pset_to_coPset_raw_finite.
Qed.
Proof. apply coPset_finite_spec; destruct X; apply Pset_to_coPset_raw_finite. Qed.
(** * Conversion to and from gsets of positives *)
Lemma coPset_to_gset_wf (m : Pmap ()) : gmap_wf positive m.
Proof. unfold gmap_wf. by rewrite bool_decide_spec. Qed.
Definition coPset_to_gset (X : coPset) : gset positive :=
let 'Mapset m := coPset_to_Pset X in
Mapset (GMap m (coPset_to_gset_wf m)).
Mapset (pmap_to_gmap m).
Definition gset_to_coPset (X : gset positive) : coPset :=
let 'Mapset (GMap (PMap t Ht) _) := X in Pset_to_coPset_raw t Pset_to_coPset_wf _ Ht.
let 'Mapset m := X in
Pset_to_coPset_raw (gmap_to_pmap m) Pset_to_coPset_raw_wf _.
Lemma elem_of_coPset_to_gset X i : set_finite X i coPset_to_gset X i X.
Proof.
intros ?. rewrite <-elem_of_coPset_to_Pset by done.
unfold coPset_to_gset. by destruct (coPset_to_Pset X).
intros ?. rewrite <-elem_of_coPset_to_Pset by done. destruct X as [X ?].
unfold elem_of, gset_elem_of, mapset_elem_of, coPset_to_gset; simpl.
by rewrite lookup_pmap_to_gmap.
Qed.
Lemma elem_of_gset_to_coPset X i : i gset_to_coPset X i X.
Proof. destruct X as [[[t ?]]]; apply elem_of_Pset_to_coPset_raw. Qed.
Proof.
destruct X as [m]. unfold elem_of, coPset_elem_of; simpl.
by rewrite elem_of_Pset_to_coPset_raw, lookup_gmap_to_pmap.
Qed.
Lemma gset_to_coPset_finite X : set_finite (gset_to_coPset X).
Proof.
apply coPset_finite_spec; destruct X as [[[t ?]]]; apply Pset_to_coPset_raw_finite.
apply coPset_finite_spec; destruct X as [[?]]; apply Pset_to_coPset_raw_finite.
Qed.
(** * Infinite sets *)
......@@ -358,21 +383,6 @@ Proof.
refine (cast_if (decide (¬set_finite X))); by rewrite coPset_infinite_finite.
Defined.
(** * Domain of finite maps *)
Global Instance Pmap_dom_coPset {A} : Dom (Pmap A) coPset := λ m, Pset_to_coPset (dom _ m).
Global Instance Pmap_dom_coPset_spec: FinMapDom positive Pmap coPset.
Proof.
split; try apply _; intros A m i; unfold dom, Pmap_dom_coPset.
by rewrite elem_of_Pset_to_coPset, elem_of_dom.
Qed.
Global Instance gmap_dom_coPset {A} : Dom (gmap positive A) coPset := λ m,
gset_to_coPset (dom _ m).
Global Instance gmap_dom_coPset_spec: FinMapDom positive (gmap positive) coPset.
Proof.
split; try apply _; intros A m i; unfold dom, gmap_dom_coPset.
by rewrite elem_of_gset_to_coPset, elem_of_dom.
Qed.
(** * Suffix sets *)
Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
match p with
......