Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
89a5e9bc
Commit
89a5e9bc
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
simplify proofs even more
parent
82b3e17d
No related branches found
Branches containing commit
No related tags found
1 merge request
!81
add inverses of bool_decide_{true,false}
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/decidable.v
+2
-6
2 additions, 6 deletions
theories/decidable.v
with
2 additions
and
6 deletions
theories/decidable.v
+
2
−
6
View file @
89a5e9bc
...
@@ -121,13 +121,9 @@ Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} :
...
@@ -121,13 +121,9 @@ Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} :
Proof
.
repeat
case_bool_decide
;
tauto
.
Qed
.
Proof
.
repeat
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_true_2
P
`{
!
Decision
P
}:
bool_decide
P
=
true
→
P
.
Lemma
bool_decide_true_2
P
`{
!
Decision
P
}:
bool_decide
P
=
true
→
P
.
Proof
.
intros
Heq
.
eapply
bool_decide_unpack
.
rewrite
Heq
.
exact
I
.
Qed
.
Proof
.
case_bool_decide
;
auto
||
discriminate
.
Qed
.
Lemma
bool_decide_false_2
P
`{
!
Decision
P
}:
bool_decide
P
=
false
→
¬
P
.
Lemma
bool_decide_false_2
P
`{
!
Decision
P
}:
bool_decide
P
=
false
→
¬
P
.
Proof
.
Proof
.
case_bool_decide
;
auto
||
discriminate
.
Qed
.
intros
Heq
HP
.
assert
(
HP'
:
bool_decide
P
)
.
{
apply
bool_decide_spec
.
assumption
.
}
case_bool_decide
;
auto
||
discriminate
.
Qed
.
(** * Decidable Sigma types *)
(** * Decidable Sigma types *)
(** Leibniz equality on Sigma types requires the equipped proofs to be
(** Leibniz equality on Sigma types requires the equipped proofs to be
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment