diff --git a/theories/decidable.v b/theories/decidable.v index e9d3af21a9e9412a05b1112a1ad98a9b07627931..684178f5ca83046db49a76673e4a0f41a661c1fb 100644 --- a/theories/decidable.v +++ b/theories/decidable.v @@ -121,13 +121,9 @@ Lemma bool_decide_iff (P Q : Prop) `{Decision P, Decision Q} : Proof. repeat case_bool_decide; tauto. Qed. Lemma bool_decide_true_2 P `{!Decision P}: bool_decide P = true → P. -Proof. intros Heq. eapply bool_decide_unpack. rewrite Heq. exact I. Qed. +Proof. case_bool_decide; auto || discriminate. Qed. Lemma bool_decide_false_2 P `{!Decision P}: bool_decide P = false → ¬P. -Proof. - intros Heq HP. assert (HP': bool_decide P). - { apply bool_decide_spec. assumption. } - case_bool_decide; auto || discriminate. -Qed. +Proof. case_bool_decide; auto || discriminate. Qed. (** * Decidable Sigma types *) (** Leibniz equality on Sigma types requires the equipped proofs to be