Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
stdpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
stdpp
Commits
7d560c15
Commit
7d560c15
authored
3 years ago
by
Gregory Malecha
Browse files
Options
Downloads
Patches
Plain Diff
Defining [tele_arg] as a [Fixpoint] avoids a universe bump.
parent
e7e4af07
No related branches found
No related tags found
1 merge request
!368
Define [tele_arg] as a fixpoint
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/telescopes.v
+43
-26
43 additions, 26 deletions
theories/telescopes.v
with
43 additions
and
26 deletions
theories/telescopes.v
+
43
−
26
View file @
7d560c15
...
...
@@ -2,9 +2,11 @@ From stdpp Require Import base tactics.
From
stdpp
Require
Import
options
.
Local
Set
Universe
Polymorphism
.
Local
Unset
Universe
Minimization
ToSet
.
Local
Set
Primitive
Projections
.
(** Telescopes *)
Inductive
tele
:
Type
:=
Cumulative
Inductive
tele
:
Type
:=
|
TeleO
:
tele
|
TeleS
{
X
}
(
binder
:
X
→
tele
)
:
tele
.
...
...
@@ -32,19 +34,29 @@ Definition tele_fold {X Y} {TT : tele} (step : ∀ {A : Type}, (A → Y) → Y)
end
)
TT
.
Global
Arguments
tele_fold
{_
_
!
_}
_
_
_
/.
(** A duplication of the type [sigT] to avoid any connection to other universes
*)
Record
tS
[
X
:
Type
]
(
f
:
X
->
Type
)
:
Type
:=
{
head
:
X
;
rest
:
f
head
}
.
(** A sigma-like type for an "element" of a telescope, i.e. the data it
takes to get a [T] from a [TT -t> T]. *)
Inductive
tele_arg
:
tele
→
Type
:=
|
TargO
:
tele_arg
TeleO
(* the [x] is the only relevant data here *)
|
TargS
{
X
}
{
binder
}
(
x
:
X
)
:
tele_arg
(
binder
x
)
→
tele_arg
(
TeleS
binder
)
.
Definition
tele_app
{
TT
:
tele
}
{
T
}
(
f
:
TT
-
t
>
T
)
:
tele_arg
TT
→
T
:=
λ
a
,
(
fix
rec
{
TT
}
(
a
:
tele_arg
TT
)
:
(
TT
-
t
>
T
)
→
T
:=
match
a
in
tele_arg
TT
return
(
TT
-
t
>
T
)
→
T
with
|
TargO
=>
λ
t
:
T
,
t
|
TargS
x
a
=>
λ
f
,
rec
a
(
f
x
)
end
)
TT
a
f
.
Fixpoint
tele_arg
@
{
u
}
(
t
:
tele
@
{
u
})
:
Type
@
{
u
}
:=
match
t
with
|
TeleO
=>
unit
|
TeleS
f
=>
tS
(
fun
x
=>
tele_arg
(
f
x
))
end
.
Global
Arguments
tele_arg
_
:
simpl
never
.
Notation
TargO
:=
tt
(
only
parsing
)
.
Notation
TargS
a
b
:=
(
@
Build_tS
_
(
fun
x
=>
tele_arg
(_
x
))
a
b
)
(
only
parsing
)
.
Fixpoint
tele_app
{
TT
:
tele
}
{
U
}
:
(
TT
-
t
>
U
)
->
tele_arg
TT
→
U
:=
match
TT
as
TT
return
(
TT
-
t
>
U
)
->
tele_arg
TT
→
U
with
|
TeleO
=>
λ
F
_,
F
|
@
TeleS
X
b
=>
λ
(
F
:
TeleS
b
-
t
>
U
)
'
(
Build_tS
_
_
x
b
),
(* b x -t> U *)
tele_app
(
F
x
)
b
end
.
(* The bidirectionality hint [&] simplifies defining tele_app-based notation
such as the atomic updates and atomic triples in Iris. *)
Global
Arguments
tele_app
{
!
_
_}
&
_
!
_
/.
...
...
@@ -53,17 +65,21 @@ Coercion tele_arg : tele >-> Sortclass.
(* This is a local coercion because otherwise, the "λ.." notation stops working. *)
Local
Coercion
tele_app
:
tele_fun
>->
Funclass
.
(** Inversion lemma for [tele_arg] *)
Lemma
tele_arg_inv
{
TT
:
tele
}
(
a
:
TT
)
:
match
TT
as
TT
return
TT
→
Prop
with
|
TeleO
=>
λ
a
,
a
=
TargO
|
TeleS
f
=>
λ
a
,
∃
x
a'
,
a
=
TargS
x
a'
(** Inversion lemma for [tele_arg]
Note the explicit universe annotation prevents this from being minimized
to [Set]. The + is needed to satisfy a bug in Coq, the resulting definition
only requires a single universe.
*)
Lemma
tele_arg_inv
@
{
u
+
}
{
TT
:
tele
@
{
u
}}
(
a
:
tele_arg
@
{
u
}
TT
)
:
match
TT
as
TT
return
tele_arg
@
{
u
}
TT
→
Prop
with
|
TeleO
=>
λ
a
,
a
=
tt
|
@
TeleS
t
f
=>
λ
a
,
∃
x
a'
,
a
=
{|
head
:=
x
;
rest
:=
a'
|}
end
a
.
Proof
.
induction
a
;
eauto
.
Qed
.
Lemma
tele_arg_O_inv
(
a
:
TeleO
)
:
a
=
TargO
.
Proof
.
destruct
TT
;
destruct
a
;
eauto
.
Qed
.
Lemma
tele_arg_O_inv
(
a
:
TeleO
)
:
a
=
()
.
Proof
.
exact
(
tele_arg_inv
a
)
.
Qed
.
Lemma
tele_arg_S_inv
{
X
}
{
f
:
X
→
tele
}
(
a
:
TeleS
f
)
:
∃
x
a'
,
a
=
TargS
x
a'
.
∃
x
a'
,
a
=
{|
head
:=
x
;
rest
:=
a'
|}
.
Proof
.
exact
(
tele_arg_inv
a
)
.
Qed
.
(** Map below a tele_fun *)
...
...
@@ -76,11 +92,12 @@ Fixpoint tele_map {T U} {TT : tele} : (T → U) → (TT -t> T) → TT -t> U :=
Global
Arguments
tele_map
{_
_
!
_}
_
_
/.
Lemma
tele_map_app
{
T
U
}
{
TT
:
tele
}
(
F
:
T
→
U
)
(
t
:
TT
-
t
>
T
)
(
x
:
TT
)
:
(
tele_map
F
t
)
x
=
F
(
t
x
)
.
tele_app
(
tele_map
F
t
)
x
=
F
(
tele_app
t
x
)
.
Proof
.
induction
TT
as
[|
X
f
IH
];
simpl
in
*.
-
rewrite
(
tele_arg_O_inv
x
)
.
done
.
-
destruct
(
tele_arg_S_inv
x
)
as
[
x'
[
a'
->
]]
.
simpl
.
unfold
tele_app
.
rewrite
<-
IH
.
done
.
Qed
.
...
...
@@ -91,11 +108,11 @@ Lemma tele_fmap_app {T U} {TT : tele} (F : T → U) (t : TT -t> T) (x : TT) :
Proof
.
apply
tele_map_app
.
Qed
.
(** Operate below [tele_fun]s with argument telescope [TT]. *)
Fixpoint
tele_bind
{
U
}
{
TT
:
tele
}
:
(
TT
→
U
)
→
TT
-
t
>
U
:=
match
TT
as
TT
return
(
TT
→
U
)
→
TT
-
t
>
U
with
|
TeleO
=>
λ
F
,
F
TargO
|
@
TeleS
X
b
=>
λ
(
F
:
TeleS
b
→
U
)
(
x
:
X
),
(* b x -t> U *)
tele_bind
(
λ
a
,
F
(
TargS
x
a
)
)
Fixpoint
tele_bind
{
U
}
{
TT
:
tele
}
:
(
tele_arg
TT
→
U
)
→
TT
-
t
>
U
:=
match
TT
as
TT
return
(
tele_arg
TT
→
U
)
→
TT
-
t
>
U
with
|
TeleO
=>
λ
F
,
F
tt
|
@
TeleS
X
b
=>
λ
(
F
:
tele_arg
(
TeleS
b
)
→
U
)
(
x
:
X
),
(* b x -t> U *)
tele_bind
(
λ
a
,
F
{|
head
:=
x
;
rest
:=
a
|}
)
end
.
Global
Arguments
tele_bind
{_
!
_}
_
/.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment