Skip to content
Snippets Groups Projects
Commit 7d560c15 authored by Gregory Malecha's avatar Gregory Malecha
Browse files

Defining [tele_arg] as a [Fixpoint] avoids a universe bump.

parent e7e4af07
No related branches found
No related tags found
1 merge request!368Define [tele_arg] as a fixpoint
......@@ -2,9 +2,11 @@ From stdpp Require Import base tactics.
From stdpp Require Import options.
Local Set Universe Polymorphism.
Local Unset Universe Minimization ToSet.
Local Set Primitive Projections.
(** Telescopes *)
Inductive tele : Type :=
Cumulative Inductive tele : Type :=
| TeleO : tele
| TeleS {X} (binder : X tele) : tele.
......@@ -32,19 +34,29 @@ Definition tele_fold {X Y} {TT : tele} (step : ∀ {A : Type}, (A → Y) → Y)
end) TT.
Global Arguments tele_fold {_ _ !_} _ _ _ /.
(** A duplication of the type [sigT] to avoid any connection to other universes
*)
Record tS [X : Type] (f : X -> Type) : Type :=
{ head : X;
rest : f head }.
(** A sigma-like type for an "element" of a telescope, i.e. the data it
takes to get a [T] from a [TT -t> T]. *)
Inductive tele_arg : tele Type :=
| TargO : tele_arg TeleO
(* the [x] is the only relevant data here *)
| TargS {X} {binder} (x : X) : tele_arg (binder x) tele_arg (TeleS binder).
Definition tele_app {TT : tele} {T} (f : TT -t> T) : tele_arg TT T :=
λ a, (fix rec {TT} (a : tele_arg TT) : (TT -t> T) T :=
match a in tele_arg TT return (TT -t> T) T with
| TargO => λ t : T, t
| TargS x a => λ f, rec a (f x)
end) TT a f.
Fixpoint tele_arg@{u} (t : tele@{u}) : Type@{u} :=
match t with
| TeleO => unit
| TeleS f => tS (fun x => tele_arg (f x))
end.
Global Arguments tele_arg _ : simpl never.
Notation TargO := tt (only parsing).
Notation TargS a b := (@Build_tS _ (fun x => tele_arg (_ x)) a b) (only parsing).
Fixpoint tele_app {TT : tele} {U} : (TT -t> U) -> tele_arg TT U :=
match TT as TT return (TT -t> U) -> tele_arg TT U with
| TeleO => λ F _, F
| @TeleS X b => λ (F : TeleS b -t> U) '(Build_tS _ _ x b), (* b x -t> U *)
tele_app (F x) b
end.
(* The bidirectionality hint [&] simplifies defining tele_app-based notation
such as the atomic updates and atomic triples in Iris. *)
Global Arguments tele_app {!_ _} & _ !_ /.
......@@ -53,17 +65,21 @@ Coercion tele_arg : tele >-> Sortclass.
(* This is a local coercion because otherwise, the "λ.." notation stops working. *)
Local Coercion tele_app : tele_fun >-> Funclass.
(** Inversion lemma for [tele_arg] *)
Lemma tele_arg_inv {TT : tele} (a : TT) :
match TT as TT return TT Prop with
| TeleO => λ a, a = TargO
| TeleS f => λ a, x a', a = TargS x a'
(** Inversion lemma for [tele_arg]
Note the explicit universe annotation prevents this from being minimized
to [Set]. The + is needed to satisfy a bug in Coq, the resulting definition
only requires a single universe.
*)
Lemma tele_arg_inv@{u+} {TT : tele@{u}} (a : tele_arg@{u} TT) :
match TT as TT return tele_arg@{u} TT Prop with
| TeleO => λ a, a = tt
| @TeleS t f => λ a, x a', a = {| head := x ; rest := a' |}
end a.
Proof. induction a; eauto. Qed.
Lemma tele_arg_O_inv (a : TeleO) : a = TargO.
Proof. destruct TT; destruct a; eauto. Qed.
Lemma tele_arg_O_inv (a : TeleO) : a = ().
Proof. exact (tele_arg_inv a). Qed.
Lemma tele_arg_S_inv {X} {f : X tele} (a : TeleS f) :
x a', a = TargS x a'.
x a', a = {| head := x ; rest := a' |}.
Proof. exact (tele_arg_inv a). Qed.
(** Map below a tele_fun *)
......@@ -76,11 +92,12 @@ Fixpoint tele_map {T U} {TT : tele} : (T → U) → (TT -t> T) → TT -t> U :=
Global Arguments tele_map {_ _ !_} _ _ /.
Lemma tele_map_app {T U} {TT : tele} (F : T U) (t : TT -t> T) (x : TT) :
(tele_map F t) x = F (t x).
tele_app (tele_map F t) x = F (tele_app t x).
Proof.
induction TT as [|X f IH]; simpl in *.
- rewrite (tele_arg_O_inv x). done.
- destruct (tele_arg_S_inv x) as [x' [a' ->]]. simpl.
unfold tele_app.
rewrite <-IH. done.
Qed.
......@@ -91,11 +108,11 @@ Lemma tele_fmap_app {T U} {TT : tele} (F : T → U) (t : TT -t> T) (x : TT) :
Proof. apply tele_map_app. Qed.
(** Operate below [tele_fun]s with argument telescope [TT]. *)
Fixpoint tele_bind {U} {TT : tele} : (TT U) TT -t> U :=
match TT as TT return (TT U) TT -t> U with
| TeleO => λ F, F TargO
| @TeleS X b => λ (F : TeleS b U) (x : X), (* b x -t> U *)
tele_bind (λ a, F (TargS x a))
Fixpoint tele_bind {U} {TT : tele} : (tele_arg TT U) TT -t> U :=
match TT as TT return (tele_arg TT U) TT -t> U with
| TeleO => λ F, F tt
| @TeleS X b => λ (F : tele_arg (TeleS b) U) (x : X), (* b x -t> U *)
tele_bind (λ a, F {| head := x ; rest := a |})
end.
Global Arguments tele_bind {_ !_} _ /.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment