From 7d560c15cc2b9f23003e682cd109b6d5207f7e6c Mon Sep 17 00:00:00 2001 From: Gregory Malecha <gregory@bedrocksystems.com> Date: Thu, 10 Feb 2022 22:02:35 -0500 Subject: [PATCH] Defining [tele_arg] as a [Fixpoint] avoids a universe bump. --- theories/telescopes.v | 69 +++++++++++++++++++++++++++---------------- 1 file changed, 43 insertions(+), 26 deletions(-) diff --git a/theories/telescopes.v b/theories/telescopes.v index 8c71582e..14f440b1 100644 --- a/theories/telescopes.v +++ b/theories/telescopes.v @@ -2,9 +2,11 @@ From stdpp Require Import base tactics. From stdpp Require Import options. Local Set Universe Polymorphism. +Local Unset Universe Minimization ToSet. +Local Set Primitive Projections. (** Telescopes *) -Inductive tele : Type := +Cumulative Inductive tele : Type := | TeleO : tele | TeleS {X} (binder : X → tele) : tele. @@ -32,19 +34,29 @@ Definition tele_fold {X Y} {TT : tele} (step : ∀ {A : Type}, (A → Y) → Y) end) TT. Global Arguments tele_fold {_ _ !_} _ _ _ /. +(** A duplication of the type [sigT] to avoid any connection to other universes + *) +Record tS [X : Type] (f : X -> Type) : Type := + { head : X; + rest : f head }. + (** A sigma-like type for an "element" of a telescope, i.e. the data it takes to get a [T] from a [TT -t> T]. *) -Inductive tele_arg : tele → Type := -| TargO : tele_arg TeleO -(* the [x] is the only relevant data here *) -| TargS {X} {binder} (x : X) : tele_arg (binder x) → tele_arg (TeleS binder). - -Definition tele_app {TT : tele} {T} (f : TT -t> T) : tele_arg TT → T := - λ a, (fix rec {TT} (a : tele_arg TT) : (TT -t> T) → T := - match a in tele_arg TT return (TT -t> T) → T with - | TargO => λ t : T, t - | TargS x a => λ f, rec a (f x) - end) TT a f. +Fixpoint tele_arg@{u} (t : tele@{u}) : Type@{u} := + match t with + | TeleO => unit + | TeleS f => tS (fun x => tele_arg (f x)) + end. +Global Arguments tele_arg _ : simpl never. +Notation TargO := tt (only parsing). +Notation TargS a b := (@Build_tS _ (fun x => tele_arg (_ x)) a b) (only parsing). + +Fixpoint tele_app {TT : tele} {U} : (TT -t> U) -> tele_arg TT → U := + match TT as TT return (TT -t> U) -> tele_arg TT → U with + | TeleO => λ F _, F + | @TeleS X b => λ (F : TeleS b -t> U) '(Build_tS _ _ x b), (* b x -t> U *) + tele_app (F x) b + end. (* The bidirectionality hint [&] simplifies defining tele_app-based notation such as the atomic updates and atomic triples in Iris. *) Global Arguments tele_app {!_ _} & _ !_ /. @@ -53,17 +65,21 @@ Coercion tele_arg : tele >-> Sortclass. (* This is a local coercion because otherwise, the "λ.." notation stops working. *) Local Coercion tele_app : tele_fun >-> Funclass. -(** Inversion lemma for [tele_arg] *) -Lemma tele_arg_inv {TT : tele} (a : TT) : - match TT as TT return TT → Prop with - | TeleO => λ a, a = TargO - | TeleS f => λ a, ∃ x a', a = TargS x a' +(** Inversion lemma for [tele_arg] + Note the explicit universe annotation prevents this from being minimized + to [Set]. The + is needed to satisfy a bug in Coq, the resulting definition + only requires a single universe. + *) +Lemma tele_arg_inv@{u+} {TT : tele@{u}} (a : tele_arg@{u} TT) : + match TT as TT return tele_arg@{u} TT → Prop with + | TeleO => λ a, a = tt + | @TeleS t f => λ a, ∃ x a', a = {| head := x ; rest := a' |} end a. -Proof. induction a; eauto. Qed. -Lemma tele_arg_O_inv (a : TeleO) : a = TargO. +Proof. destruct TT; destruct a; eauto. Qed. +Lemma tele_arg_O_inv (a : TeleO) : a = (). Proof. exact (tele_arg_inv a). Qed. Lemma tele_arg_S_inv {X} {f : X → tele} (a : TeleS f) : - ∃ x a', a = TargS x a'. + ∃ x a', a = {| head := x ; rest := a' |}. Proof. exact (tele_arg_inv a). Qed. (** Map below a tele_fun *) @@ -76,11 +92,12 @@ Fixpoint tele_map {T U} {TT : tele} : (T → U) → (TT -t> T) → TT -t> U := Global Arguments tele_map {_ _ !_} _ _ /. Lemma tele_map_app {T U} {TT : tele} (F : T → U) (t : TT -t> T) (x : TT) : - (tele_map F t) x = F (t x). + tele_app (tele_map F t) x = F (tele_app t x). Proof. induction TT as [|X f IH]; simpl in *. - rewrite (tele_arg_O_inv x). done. - destruct (tele_arg_S_inv x) as [x' [a' ->]]. simpl. + unfold tele_app. rewrite <-IH. done. Qed. @@ -91,11 +108,11 @@ Lemma tele_fmap_app {T U} {TT : tele} (F : T → U) (t : TT -t> T) (x : TT) : Proof. apply tele_map_app. Qed. (** Operate below [tele_fun]s with argument telescope [TT]. *) -Fixpoint tele_bind {U} {TT : tele} : (TT → U) → TT -t> U := - match TT as TT return (TT → U) → TT -t> U with - | TeleO => λ F, F TargO - | @TeleS X b => λ (F : TeleS b → U) (x : X), (* b x -t> U *) - tele_bind (λ a, F (TargS x a)) +Fixpoint tele_bind {U} {TT : tele} : (tele_arg TT → U) → TT -t> U := + match TT as TT return (tele_arg TT → U) → TT -t> U with + | TeleO => λ F, F tt + | @TeleS X b => λ (F : tele_arg (TeleS b) → U) (x : X), (* b x -t> U *) + tele_bind (λ a, F {| head := x ; rest := a |}) end. Global Arguments tele_bind {_ !_} _ /. -- GitLab