Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
lambda-rust
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Service Desk
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
lambda-rust
Commits
a351b986
Commit
a351b986
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Uncomment stuff.
parent
363fb9c1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/lifetime.v
+8
-12
8 additions, 12 deletions
theories/lifetime.v
with
8 additions
and
12 deletions
theories/lifetime.v
+
8
−
12
View file @
a351b986
...
@@ -765,7 +765,6 @@ contradict H7. apply elem_of_dom. set_solver +HI Hκ.
...
@@ -765,7 +765,6 @@ contradict H7. apply elem_of_dom. set_solver +HI Hκ.
+
iRight
.
iFrame
.
iPureIntro
.
by
apply
lft_dead_in_insert_false
.
+
iRight
.
iFrame
.
iPureIntro
.
by
apply
lft_dead_in_insert_false
.
Qed
.
Qed
.
(*
(** Basic borrows *)
(** Basic borrows *)
Lemma
bor_create
E
κ
P
:
Lemma
bor_create
E
κ
P
:
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
...
@@ -775,7 +774,7 @@ Lemma bor_fake E κ P :
...
@@ -775,7 +774,7 @@ Lemma bor_fake E κ P :
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
lft_ctx
⊢
[
†
κ
]
=
{
E
}
=∗
&
{
κ
}
P
.
lft_ctx
⊢
[
†
κ
]
=
{
E
}
=∗
&
{
κ
}
P
.
Proof
.
Proof
.
iIntros (?) "#?". iDestruct 1 as (Λ) "[% ?]".
iIntros
(?)
"#?"
.
(*
iDestruct 1 as (Λ) "[% ?]".
*)
Admitted
.
Admitted
.
Lemma
bor_sep
E
κ
P
Q
:
Lemma
bor_sep
E
κ
P
Q
:
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
...
@@ -794,9 +793,9 @@ Lemma bor_acc_strong E q κ P :
...
@@ -794,9 +793,9 @@ Lemma bor_acc_strong E q κ P :
Proof
.
Admitted
.
Proof
.
Admitted
.
Lemma
bor_acc_atomic_strong
E
κ
P
:
Lemma
bor_acc_atomic_strong
E
κ
P
:
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
lft_ctx ⊢ &{κ} P ={E,E∖lftN}=∗
lft_ctx
⊢
&
{
κ
}
P
=
{
E
,
E
∖
↑
lftN
}
=∗
(▷ P ∗ ∀ Q, ▷ Q ∗ ▷ ([†κ] -∗ ▷ Q ={⊤∖↑lftN}=∗ ▷ P) ={E∖lftN,E}=∗ &{κ} Q) ∨
(
▷
P
∗
∀
Q
,
▷
Q
∗
▷
([
†
κ
]
-∗
▷
Q
=
{
⊤∖↑
lftN
}
=∗
▷
P
)
=
{
E
∖
↑
lftN
,
E
}
=∗
&
{
κ
}
Q
)
∨
[†κ] ∗ |={E∖lftN,E}=> True.
[
†
κ
]
∗
|
=
{
E
∖
↑
lftN
,
E
}=>
True
.
Proof
.
Admitted
.
Proof
.
Admitted
.
Lemma
bor_reborrow'
E
κ
κ'
P
:
Lemma
bor_reborrow'
E
κ
κ'
P
:
↑
lftN
⊆
E
→
κ
⊆
κ'
→
↑
lftN
⊆
E
→
κ
⊆
κ'
→
...
@@ -816,15 +815,16 @@ Proof. Admitted.
...
@@ -816,15 +815,16 @@ Proof. Admitted.
Lemma
idx_bor_atomic_acc
E
q
κ
i
P
:
Lemma
idx_bor_atomic_acc
E
q
κ
i
P
:
↑
lftN
⊆
E
→
↑
lftN
⊆
E
→
lft_ctx ⊢ idx_bor κ i P -∗ idx_bor_own q i ={E,E∖lftN}=∗
lft_ctx
⊢
idx_bor
κ
i
P
-∗
idx_bor_own
q
i
=
{
E
,
E
∖
↑
lftN
}
=∗
▷ P ∗ (▷ P ={E∖lftN,E}=∗ idx_bor_own q i) ∨
▷
P
∗
(
▷
P
=
{
E
∖
↑
lftN
,
E
}
=∗
idx_bor_own
q
i
)
∨
[†κ] ∗ (|={E∖lftN,E}=> idx_bor_own q i).
[
†
κ
]
∗
(|
=
{
E
∖
↑
lftN
,
E
}=>
idx_bor_own
q
i
)
.
Proof
.
Admitted
.
Proof
.
Admitted
.
Lemma
idx_bor_shorten
κ
κ'
i
P
:
Lemma
idx_bor_shorten
κ
κ'
i
P
:
κ
⊑
κ'
⊢
idx_bor
κ'
i
P
-∗
idx_bor
κ
i
P
.
κ
⊑
κ'
⊢
idx_bor
κ'
i
P
-∗
idx_bor
κ
i
P
.
Proof
.
Admitted
.
Proof
.
Admitted
.
(*
(*** Derived lemmas *)
(*** Derived lemmas *)
Lemma borrow_acc E q κ P : ↑lftN ⊆ E →
Lemma borrow_acc E q κ P : ↑lftN ⊆ E →
...
@@ -932,8 +932,4 @@ Proof. Admitted.
...
@@ -932,8 +932,4 @@ Proof. Admitted.
{ iApply lft_incl_lb. iSplit. done. iApply lft_incl_refl. }
{ iApply lft_incl_lb. iSplit. done. iApply lft_incl_refl. }
iIntros "!>Hκ'". iApply ("H∋" with "[Hκ']"). iApply lft_dead_or. auto.
iIntros "!>Hκ'". iApply ("H∋" with "[Hκ']"). iApply lft_dead_or. auto.
Qed.
Qed.
End incl.
Typeclasses Opaque lft_incl.
*)
*)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment