Skip to content
Snippets Groups Projects
Commit a351b986 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Uncomment stuff.

parent 363fb9c1
No related branches found
No related tags found
No related merge requests found
...@@ -765,7 +765,6 @@ contradict H7. apply elem_of_dom. set_solver +HI Hκ. ...@@ -765,7 +765,6 @@ contradict H7. apply elem_of_dom. set_solver +HI Hκ.
+ iRight. iFrame. iPureIntro. by apply lft_dead_in_insert_false. + iRight. iFrame. iPureIntro. by apply lft_dead_in_insert_false.
Qed. Qed.
(*
(** Basic borrows *) (** Basic borrows *)
Lemma bor_create E κ P : Lemma bor_create E κ P :
lftN E lftN E
...@@ -775,7 +774,7 @@ Lemma bor_fake E κ P : ...@@ -775,7 +774,7 @@ Lemma bor_fake E κ P :
lftN E lftN E
lft_ctx [κ] ={E}=∗ &{κ}P. lft_ctx [κ] ={E}=∗ &{κ}P.
Proof. Proof.
iIntros (?) "#?". iDestruct 1 as (Λ) "[% ?]". iIntros (?) "#?". (* iDestruct 1 as (Λ) "[% ?]". *)
Admitted. Admitted.
Lemma bor_sep E κ P Q : Lemma bor_sep E κ P Q :
lftN E lftN E
...@@ -794,9 +793,9 @@ Lemma bor_acc_strong E q κ P : ...@@ -794,9 +793,9 @@ Lemma bor_acc_strong E q κ P :
Proof. Admitted. Proof. Admitted.
Lemma bor_acc_atomic_strong E κ P : Lemma bor_acc_atomic_strong E κ P :
lftN E lftN E
lft_ctx ⊢ &{κ} P ={E,E∖lftN}=∗ lft_ctx &{κ} P ={E,ElftN}=∗
(▷ P ∗ ∀ Q, ▷ Q ∗ ▷ ([†κ] -∗ ▷ Q ={⊤∖↑lftN}=∗ ▷ P) ={E∖lftN,E}=∗ &{κ} Q) ∨ ( P Q, Q ([κ] -∗ Q ={⊤∖↑lftN}=∗ P) ={ElftN,E}=∗ &{κ} Q)
[†κ] ∗ |={E∖lftN,E}=> True. [κ] |={ElftN,E}=> True.
Proof. Admitted. Proof. Admitted.
Lemma bor_reborrow' E κ κ' P : Lemma bor_reborrow' E κ κ' P :
lftN E κ κ' lftN E κ κ'
...@@ -816,15 +815,16 @@ Proof. Admitted. ...@@ -816,15 +815,16 @@ Proof. Admitted.
Lemma idx_bor_atomic_acc E q κ i P : Lemma idx_bor_atomic_acc E q κ i P :
lftN E lftN E
lft_ctx ⊢ idx_bor κ i P -∗ idx_bor_own q i ={E,E∖lftN}=∗ lft_ctx idx_bor κ i P -∗ idx_bor_own q i ={E,ElftN}=∗
▷ P ∗ (▷ P ={E∖lftN,E}=∗ idx_bor_own q i) ∨ P ( P ={ElftN,E}=∗ idx_bor_own q i)
[†κ] ∗ (|={E∖lftN,E}=> idx_bor_own q i). [κ] (|={ElftN,E}=> idx_bor_own q i).
Proof. Admitted. Proof. Admitted.
Lemma idx_bor_shorten κ κ' i P : Lemma idx_bor_shorten κ κ' i P :
κ κ' idx_bor κ' i P -∗ idx_bor κ i P. κ κ' idx_bor κ' i P -∗ idx_bor κ i P.
Proof. Admitted. Proof. Admitted.
(*
(*** Derived lemmas *) (*** Derived lemmas *)
Lemma borrow_acc E q κ P : ↑lftN ⊆ E → Lemma borrow_acc E q κ P : ↑lftN ⊆ E →
...@@ -932,8 +932,4 @@ Proof. Admitted. ...@@ -932,8 +932,4 @@ Proof. Admitted.
{ iApply lft_incl_lb. iSplit. done. iApply lft_incl_refl. } { iApply lft_incl_lb. iSplit. done. iApply lft_incl_refl. }
iIntros "!>Hκ'". iApply ("H∋" with "[Hκ']"). iApply lft_dead_or. auto. iIntros "!>Hκ'". iApply ("H∋" with "[Hκ']"). iApply lft_dead_or. auto.
Qed. Qed.
End incl.
Typeclasses Opaque lft_incl.
*) *)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment