Skip to content
Snippets Groups Projects
Commit a351b986 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Uncomment stuff.

parent 363fb9c1
Branches
Tags
No related merge requests found
......@@ -765,7 +765,6 @@ contradict H7. apply elem_of_dom. set_solver +HI Hκ.
+ iRight. iFrame. iPureIntro. by apply lft_dead_in_insert_false.
Qed.
(*
(** Basic borrows *)
Lemma bor_create E κ P :
lftN E
......@@ -775,7 +774,7 @@ Lemma bor_fake E κ P :
lftN E
lft_ctx [κ] ={E}=∗ &{κ}P.
Proof.
iIntros (?) "#?". iDestruct 1 as (Λ) "[% ?]".
iIntros (?) "#?". (* iDestruct 1 as (Λ) "[% ?]". *)
Admitted.
Lemma bor_sep E κ P Q :
lftN E
......@@ -794,9 +793,9 @@ Lemma bor_acc_strong E q κ P :
Proof. Admitted.
Lemma bor_acc_atomic_strong E κ P :
lftN E
lft_ctx ⊢ &{κ} P ={E,E∖lftN}=∗
(▷ P ∗ ∀ Q, ▷ Q ∗ ▷ ([†κ] -∗ ▷ Q ={⊤∖↑lftN}=∗ ▷ P) ={E∖lftN,E}=∗ &{κ} Q) ∨
[†κ] ∗ |={E∖lftN,E}=> True.
lft_ctx &{κ} P ={E,ElftN}=∗
( P Q, Q ([κ] -∗ Q ={⊤∖↑lftN}=∗ P) ={ElftN,E}=∗ &{κ} Q)
[κ] |={ElftN,E}=> True.
Proof. Admitted.
Lemma bor_reborrow' E κ κ' P :
lftN E κ κ'
......@@ -816,15 +815,16 @@ Proof. Admitted.
Lemma idx_bor_atomic_acc E q κ i P :
lftN E
lft_ctx ⊢ idx_bor κ i P -∗ idx_bor_own q i ={E,E∖lftN}=∗
▷ P ∗ (▷ P ={E∖lftN,E}=∗ idx_bor_own q i) ∨
[†κ] ∗ (|={E∖lftN,E}=> idx_bor_own q i).
lft_ctx idx_bor κ i P -∗ idx_bor_own q i ={E,ElftN}=∗
P ( P ={ElftN,E}=∗ idx_bor_own q i)
[κ] (|={ElftN,E}=> idx_bor_own q i).
Proof. Admitted.
Lemma idx_bor_shorten κ κ' i P :
κ κ' idx_bor κ' i P -∗ idx_bor κ i P.
Proof. Admitted.
(*
(*** Derived lemmas *)
Lemma borrow_acc E q κ P : ↑lftN ⊆ E →
......@@ -932,8 +932,4 @@ Proof. Admitted.
{ iApply lft_incl_lb. iSplit. done. iApply lft_incl_refl. }
iIntros "!>Hκ'". iApply ("H∋" with "[Hκ']"). iApply lft_dead_or. auto.
Qed.
End incl.
Typeclasses Opaque lft_incl.
*)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment