Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Iris
Commits
f72ccbec
Commit
f72ccbec
authored
7 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Remove primitive rule `□ (P ∧ Q) ⊢ □ (P ∗ Q)`.
It can be derived, thanks to Ales for noticing!
parent
6d89cb87
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/base_logic/derived.v
+10
-4
10 additions, 4 deletions
theories/base_logic/derived.v
theories/base_logic/primitive.v
+0
-5
0 additions, 5 deletions
theories/base_logic/primitive.v
with
10 additions
and
9 deletions
theories/base_logic/derived.v
+
10
−
4
View file @
f72ccbec
...
...
@@ -479,6 +479,8 @@ Proof. intros P Q; apply always_mono. Qed.
Lemma
always_intro'
P
Q
:
(
□
P
⊢
Q
)
→
□
P
⊢
□
Q
.
Proof
.
intros
<-.
apply
always_idemp
.
Qed
.
Lemma
always_idemp
P
:
□
□
P
⊣⊢
□
P
.
Proof
.
apply
(
anti_symm
_);
auto
using
always_idemp
.
Qed
.
Lemma
always_pure
φ
:
□
⌜
φ
⌝
⊣⊢
⌜
φ
⌝.
Proof
.
apply
(
anti_symm
_);
auto
using
always_pure_2
.
Qed
.
...
...
@@ -509,16 +511,20 @@ Proof.
rewrite
-
(
internal_eq_refl
a
)
always_pure
;
auto
.
Qed
.
Lemma
always_and_sep
P
Q
:
□
(
P
∧
Q
)
⊣⊢
□
(
P
∗
Q
)
.
Proof
.
apply
(
anti_symm
(
⊢
));
auto
using
always_and_sep_1
.
Qed
.
Lemma
always_and_sep_l'
P
Q
:
□
P
∧
Q
⊣⊢
□
P
∗
Q
.
Proof
.
apply
(
anti_symm
(
⊢
));
auto
using
always_and_sep_l_1
.
Qed
.
Lemma
always_and_sep_r'
P
Q
:
P
∧
□
Q
⊣⊢
P
∗
□
Q
.
Proof
.
by
rewrite
!
(
comm
_
P
)
always_and_sep_l'
.
Qed
.
Lemma
always_sep_dup'
P
:
□
P
⊣⊢
□
P
∗
□
P
.
Proof
.
by
rewrite
-
always_and_sep_l'
idemp
.
Qed
.
Lemma
always_and_sep
P
Q
:
□
(
P
∧
Q
)
⊣⊢
□
(
P
∗
Q
)
.
Proof
.
apply
(
anti_symm
(
⊢
));
auto
.
rewrite
-
{
1
}
always_idemp
always_and
always_and_sep_l'
;
auto
.
Qed
.
Lemma
always_sep
P
Q
:
□
(
P
∗
Q
)
⊣⊢
□
P
∗
□
Q
.
Proof
.
by
rewrite
-
always_and_sep
-
always_and_sep_l'
always_and
.
Qed
.
Lemma
always_sep_dup'
P
:
□
P
⊣⊢
□
P
∗
□
P
.
Proof
.
by
rewrite
-
always_sep
-
always_and_sep
(
idemp
_)
.
Qed
.
Lemma
always_wand
P
Q
:
□
(
P
-∗
Q
)
⊢
□
P
-∗
□
Q
.
Proof
.
by
apply
wand_intro_r
;
rewrite
-
always_sep
wand_elim_l
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/base_logic/primitive.v
+
0
−
5
View file @
f72ccbec
...
...
@@ -437,11 +437,6 @@ Proof. by unseal. Qed.
Lemma
always_exist_1
{
A
}
(
Ψ
:
A
→
uPred
M
)
:
(
□
∃
a
,
Ψ
a
)
⊢
(
∃
a
,
□
Ψ
a
)
.
Proof
.
by
unseal
.
Qed
.
Lemma
always_and_sep_1
P
Q
:
□
(
P
∧
Q
)
⊢
□
(
P
∗
Q
)
.
Proof
.
unseal
;
split
=>
n
x
?
[??]
.
exists
(
core
x
),
(
core
x
);
rewrite
-
cmra_core_dup
;
auto
.
Qed
.
Lemma
always_and_sep_l_1
P
Q
:
□
P
∧
Q
⊢
□
P
∗
Q
.
Proof
.
unseal
;
split
=>
n
x
?
[??];
exists
(
core
x
),
x
;
simpl
in
*.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment