Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
6d89cb87
Commit
6d89cb87
authored
Jun 12, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Lemmas for big_ops and unit.
parent
5a291902
Pipeline
#4248
passed with stage
in 2 minutes and 35 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
0 deletions
+17
-0
theories/algebra/big_op.v
theories/algebra/big_op.v
+17
-0
No files found.
theories/algebra/big_op.v
View file @
6d89cb87
...
...
@@ -90,6 +90,9 @@ Section list.
by
rewrite
IH
assoc
.
Qed
.
Lemma
big_opL_unit
l
:
([^
o
list
]
k
↦
y
∈
l
,
monoid_unit
)
≡
(
monoid_unit
:
M
).
Proof
.
induction
l
;
rewrite
/=
?left_id
//.
Qed
.
Lemma
big_opL_forall
R
f
g
l
:
Reflexive
R
→
Proper
(
R
==>
R
==>
R
)
o
→
...
...
@@ -204,6 +207,9 @@ Section gmap.
by
rewrite
big_opM_empty
right_id
.
Qed
.
Lemma
big_opM_unit
m
:
([^
o
map
]
k
↦
y
∈
m
,
monoid_unit
)
≡
(
monoid_unit
:
M
).
Proof
.
induction
m
using
map_ind
;
rewrite
/=
?big_opM_insert
?left_id
//.
Qed
.
Lemma
big_opM_fmap
{
B
}
(
h
:
A
→
B
)
(
f
:
K
→
B
→
M
)
m
:
([^
o
map
]
k
↦
y
∈
h
<$>
m
,
f
k
y
)
≡
([^
o
map
]
k
↦
y
∈
m
,
f
k
(
h
y
)).
Proof
.
...
...
@@ -310,6 +316,11 @@ Section gset.
Lemma
big_opS_singleton
f
x
:
([^
o
set
]
y
∈
{[
x
]},
f
y
)
≡
f
x
.
Proof
.
intros
.
by
rewrite
/
big_opS
elements_singleton
/=
right_id
.
Qed
.
Lemma
big_opS_unit
X
:
([^
o
set
]
y
∈
X
,
monoid_unit
)
≡
(
monoid_unit
:
M
).
Proof
.
induction
X
using
collection_ind_L
;
rewrite
/=
?big_opS_insert
?left_id
//.
Qed
.
Lemma
big_opS_opS
f
g
X
:
([^
o
set
]
y
∈
X
,
f
y
`
o
`
g
y
)
≡
([^
o
set
]
y
∈
X
,
f
y
)
`
o
`
([^
o
set
]
y
∈
X
,
g
y
).
Proof
.
by
rewrite
/
big_opS
-
big_opL_opL
.
Qed
.
...
...
@@ -372,6 +383,12 @@ Section gmultiset.
by
rewrite
-
gmultiset_union_difference'
.
Qed
.
Lemma
big_opMS_unit
X
:
([^
o
mset
]
y
∈
X
,
monoid_unit
)
≡
(
monoid_unit
:
M
).
Proof
.
induction
X
using
gmultiset_ind
;
rewrite
/=
?big_opMS_union
?big_opMS_singleton
?left_id
//.
Qed
.
Lemma
big_opMS_opMS
f
g
X
:
([^
o
mset
]
y
∈
X
,
f
y
`
o
`
g
y
)
≡
([^
o
mset
]
y
∈
X
,
f
y
)
`
o
`
([^
o
mset
]
y
∈
X
,
g
y
).
Proof
.
by
rewrite
/
big_opMS
-
big_opL_opL
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment