Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
examples
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
examples
Commits
65081e7d
Commit
65081e7d
authored
8 years ago
by
Zhen Zhang
Browse files
Options
Downloads
Patches
Plain Diff
add quirky spec
parent
ec2684b0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
flat.v
+104
-8
104 additions, 8 deletions
flat.v
with
104 additions
and
8 deletions
flat.v
+
104
−
8
View file @
65081e7d
From
iris
.
program_logic
Require
Export
auth
weakestpre
saved_prop
.
From
iris
.
proofmode
Require
Import
invariants
ghost_ownership
.
From
iris
.
heap_lang
Require
Export
lang
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
heap_lang
.
lib
Require
Import
spin_lock
.
...
...
@@ -407,12 +406,11 @@ Section proof.
Qed
.
Definition
flatten
(
f'
f
:
val
)
:=
(
∀
P
Q
,
(
∀
x
:
val
,
{{
R
★
P
x
}}
f
x
{{
v
,
R
★
Q
x
v
}})
→
(
∀
x
:
val
,
{{
P
x
}}
f'
x
{{
v
,
▷
Q
x
v
}}))
%
I
.
(
∀
P
Q
(
x
:
val
),
({{
R
★
P
x
}}
f
x
{{
v
,
R
★
Q
x
v
}})
→
({{
P
x
}}
f'
x
{{
v
,
▷
Q
x
v
}}))
%
I
.
Lemma
mk_flat_spec
(
f
:
val
)
:
∀
(
Φ
:
val
→
iProp
Σ
),
heapN
⊥
N
→
heapN
⊥
N
→
heap_ctx
★
R
★
(
∀
f'
,
□
flatten
f'
f
-★
Φ
f'
)
⊢
WP
mk_flat
f
{{
Φ
}}
.
Proof
.
iIntros
(
Φ
HN
)
"(#Hh & HR & HΦ)"
.
...
...
@@ -427,8 +425,8 @@ Section proof.
iApply
(
new_stack_spec'
_
(
p_inv
γm
γr
f
))=>
//.
iFrame
"Hh Hm"
.
iIntros
(
γ
s
)
"#Hss"
.
wp_let
.
iVsIntro
.
iApply
"HΦ"
.
rewrite
/
flatten
.
iAlways
.
iIntros
(
P
Q
)
"#Hf"
.
iIntros
(
x
)
"!# Hp"
.
wp_let
.
iAlways
.
iIntros
(
P
Q
x
)
"#Hf"
.
iIntros
"!# Hp"
.
wp_let
.
wp_bind
((
install
_)
_)
.
iApply
(
install_spec
_
P
Q
)=>
//.
iFrame
"#"
.
iFrame
"Hp"
.
iSplitR
;
first
iApply
"Hf"
.
...
...
@@ -439,10 +437,108 @@ Section proof.
iDestruct
"Hs"
as
(
Q'
)
"(Hx' & HoQ' & HQ')"
.
destruct
(
decide
(
x
=
a
))
as
[
->
|
Hneq
]
.
-
iDestruct
(
saved_prop_agree
with
"[HoQ HoQ']"
)
as
"Heq"
;
first
by
iFrame
.
iNext
.
admit
.
(* iRewrite "Heq" in "HQ'". *)
iNext
.
iDestruct
(
uPred
.
cofe_funC_equivI
with
"Heq"
)
as
"Heq"
.
iSpecialize
(
"Heq"
$!
a0
)
.
by
iRewrite
"Heq"
in
"HQ'"
.
-
iExFalso
.
iCombine
"Hx"
"Hx'"
as
"Hx"
.
iDestruct
(
own_valid
with
"Hx"
)
as
%
[_
H1
]
.
rewrite
pair_op
//=
dec_agree_ne
in
H1
=>
//.
Admitt
ed
.
Q
ed
.
End
proof
.
Definition
syncR
:=
prodR
fracR
(
dec_agreeR
val
)
.
(* FIXME: can't use a general A instead of val *)
Class
syncG
Σ
:=
sync_tokG
:>
inG
Σ
syncR
.
Definition
syncΣ
:
gFunctors
:=
#
[
GFunctor
(
constRF
syncR
)]
.
Instance
subG_syncΣ
{
Σ
}
:
subG
syncΣ
Σ
→
syncG
Σ
.
Proof
.
by
intros
?
%
subG_inG
.
Qed
.
Section
atomic_sync
.
Context
`{
!
heapG
Σ
,
!
lockG
Σ
,
!
syncG
Σ
,
!
evidenceG
loc
val
Σ
,
!
flatG
Σ
}
(
N
:
namespace
)
.
Definition
A
:=
val
.
Definition
gFragR
g
:
syncR
:=
((
1
/
2
)
%
Qp
,
DecAgree
g
)
.
Definition
gFullR
g
:
syncR
:=
((
1
/
2
)
%
Qp
,
DecAgree
g
)
.
Definition
gFrag
(
γ
:
gname
)
g
:
iProp
Σ
:=
own
γ
(
gFragR
g
)
.
Definition
gFull
(
γ
:
gname
)
g
:
iProp
Σ
:=
own
γ
(
gFullR
g
)
.
Global
Instance
frag_timeless
γ
g
:
TimelessP
(
gFrag
γ
g
)
.
Proof
.
apply
_
.
Qed
.
Global
Instance
full_timeless
γ
g
:
TimelessP
(
gFull
γ
g
)
.
Proof
.
apply
_
.
Qed
.
Definition
atomic_triple'
(
α
:
val
→
iProp
Σ
)
(
β
:
val
→
A
→
A
→
val
→
iProp
Σ
)
(
Ei
Eo
:
coPset
)
(
f
x
:
val
)
γ
:
iProp
Σ
:=
(
∀
P
Q
,
(
∀
g
,
(
P
x
=
{
Eo
,
Ei
}=>
gFrag
γ
g
★
□
α
x
)
★
(
gFrag
γ
g
★
□
α
x
=
{
Ei
,
Eo
}=>
P
x
)
★
(
∀
g'
r
,
gFrag
γ
g'
★
β
x
g
g'
r
=
{
Ei
,
Eo
}=>
Q
x
r
))
-★
{{
P
x
}}
f
x
{{
v
,
▷
Q
x
v
}})
%
I
.
Definition
sync
:
val
:=
λ
:
"f_cons"
"f_seq"
,
let
:
"l"
:=
"f_cons"
#
()
in
mk_flat
(
"f_seq"
"l"
)
.
Definition
seq_spec
(
f
:
val
)
(
ϕ
:
val
→
A
→
iProp
Σ
)
α
β
(
E
:
coPset
)
:=
∀
(
Φ
:
val
→
iProp
Σ
)
(
l
:
val
),
{{
True
}}
f
l
{{
f'
,
■
(
∀
(
x
:
val
)
(
Φ
:
val
→
iProp
Σ
)
(
g
:
A
),
heapN
⊥
N
→
heap_ctx
★
ϕ
l
g
★
□
α
x
★
(
∀
(
v
:
val
)
(
g'
:
A
),
ϕ
l
g'
-★
β
x
g
g'
v
-★
|
=
{
E
}=>
Φ
v
)
⊢
WP
f'
x
@
E
{{
Φ
}}
)}}
.
Definition
cons_spec
(
f
:
val
)
(
g
:
A
)
ϕ
:=
∀
Φ
:
val
→
iProp
Σ
,
heapN
⊥
N
→
heap_ctx
★
(
∀
(
l
:
val
)
(
γ
:
gname
),
ϕ
l
g
-★
gFull
γ
g
-★
gFrag
γ
g
-★
Φ
l
)
⊢
WP
f
#
()
{{
Φ
}}
.
Lemma
atomic_spec
(
f_cons
f_seq
:
val
)
(
ϕ
:
val
→
A
→
iProp
Σ
)
α
β
Ei
:
∀
(
g0
:
A
),
heapN
⊥
N
→
seq_spec
f_seq
ϕ
α
β
⊤
→
cons_spec
f_cons
g0
ϕ
→
heap_ctx
⊢
WP
sync
f_cons
f_seq
{{
f
,
∃
γ
,
gFrag
γ
g0
★
∀
x
,
□
atomic_triple'
α
β
Ei
⊤
f
x
γ
}}
.
Proof
.
iIntros
(
g0
HN
Hseq
Hcons
)
"#Hh"
.
repeat
wp_let
.
wp_bind
(
f_cons
_)
.
iApply
Hcons
=>
//.
iFrame
"Hh"
.
iIntros
(
l
γ
)
"Hϕ HFull HFrag"
.
wp_let
.
wp_bind
(
f_seq
_)
%
E
.
iApply
wp_wand_r
.
iSplitR
;
first
by
iApply
(
Hseq
with
"[]"
)=>
//.
iIntros
(
f
Hf
)
.
iApply
(
mk_flat_spec
_
(
∃
g
:
A
,
ϕ
l
g
★
gFull
γ
g
)
%
I
)=>
//.
iFrame
"#"
.
iSplitL
"HFull Hϕ"
.
{
iExists
g0
.
by
iFrame
.
}
iIntros
(
f'
)
"#Hflatten"
.
iExists
γ
.
iFrame
.
iIntros
(
x
)
.
iAlways
.
rewrite
/
atomic_triple'
.
iIntros
(
P
Q
)
"#Hvss"
.
rewrite
/
flatten
.
iSpecialize
(
"Hflatten"
$!
P
Q
)
.
iApply
(
"Hflatten"
with
"[]"
)
.
iAlways
.
iIntros
"[HR HP]"
.
iDestruct
"HR"
as
(
g
)
"[Hϕ HgFull]"
.
(* we should view shift at this point *)
iDestruct
(
"Hvss"
$!
g
)
as
"[Hvs1 [Hvs2 Hvs3]]"
.
iApply
pvs_wp
.
iVs
(
"Hvs1"
with
"HP"
)
as
"[HgFrag #Hα]"
.
iVs
(
"Hvs2"
with
"[HgFrag]"
)
as
"HP"
;
first
by
iFrame
.
iVsIntro
.
iApply
Hf
=>
//.
iFrame
"Hh Hϕ"
.
iSplitR
;
first
done
.
iIntros
(
ret
g'
)
"Hϕ' Hβ"
.
iVs
(
"Hvs1"
with
"HP"
)
as
"[HgFrag _]"
.
iCombine
"HgFull"
"HgFrag"
as
"Hg"
.
rewrite
/
gFullR
/
gFragR
.
iAssert
(|
=
r
=>
own
γ
(((
1
/
2
)
%
Qp
,
DecAgree
g'
)
⋅
((
1
/
2
)
%
Qp
,
DecAgree
g'
)))
%
I
with
"[Hg]"
as
"Hupd"
.
{
iApply
(
own_update
);
last
by
iAssumption
.
apply
pair_l_frac_update
.
}
iVs
"Hupd"
as
"[HgFull HgFrag]"
.
iVs
(
"Hvs3"
$!
g'
ret
with
"[HgFrag Hβ]"
);
first
by
iFrame
.
iVsIntro
.
iSplitL
"HgFull Hϕ'"
.
-
iExists
g'
.
by
iFrame
.
-
done
.
Qed
.
End
atomic_sync
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment