Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Actris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Iris
Actris
Commits
adb7d112
Commit
adb7d112
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Distributed mapper.
parent
46799c39
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/examples/mapper.v
+204
-0
204 additions, 0 deletions
theories/examples/mapper.v
theories/utils/contribution.v
+25
-15
25 additions, 15 deletions
theories/utils/contribution.v
with
229 additions
and
15 deletions
theories/examples/mapper.v
0 → 100644
+
204
−
0
View file @
adb7d112
From
stdpp
Require
Import
sorting
.
From
osiris
.
channel
Require
Import
proto_channel
proofmode
.
From
iris
.
heap_lang
Require
Import
proofmode
notation
.
From
iris
.
heap_lang
Require
Import
assert
.
From
osiris
.
utils
Require
Import
list
compare
spin_lock
contribution
.
From
osiris
.
examples
Require
Import
list_sort_elem
.
From
iris
.
algebra
Require
Import
gmultiset
.
Definition
mapper
:
val
:=
rec
:
"go"
"f"
"l"
"c"
:=
acquire
"l"
;;
send
"c"
#
true
;;
if
:
~recv
"c"
then
release
"l"
else
let
:
"x"
:=
recv
"c"
in
release
"l"
;;
let
:
"y"
:=
"f"
"x"
in
acquire
"l"
;;
send
"c"
#
false
;;
send
"c"
"y"
;;
release
"l"
;;
"go"
"f"
"l"
"c"
.
Definition
start_mappers
:
val
:=
rec
:
"go"
"n"
"f"
"l"
"c"
:=
if
:
"n"
=
#
0
then
#
()
else
Fork
(
mapper
"f"
"l"
"c"
);;
"go"
(
"n"
-
#
1
)
"f"
"l"
"c"
.
Definition
loop_mappers
:
val
:=
rec
:
"go"
"n"
"c"
"xs"
"ys"
:=
if
:
"n"
=
#
0
then
"ys"
else
if
:
recv
"c"
then
if
:
lisnil
"xs"
then
send
"c"
#
false
;;
"go"
(
"n"
-
#
1
)
"c"
"xs"
"ys"
else
send
"c"
#
true
;;
send
"c"
(
lhead
"xs"
);;
"go"
"n"
"c"
(
ltail
"xs"
)
"ys"
else
let
:
"y"
:=
recv
"c"
in
"go"
"n"
"c"
"xs"
(
lcons
"y"
"ys"
)
.
Definition
mapper_service
:
val
:=
λ
:
"n"
"f"
"xs"
,
let
:
"l"
:=
new_lock
#
()
in
let
:
"c"
:=
start_chan
(
λ
:
"c"
,
start_mappers
"n"
"f"
"l"
"c"
)
in
loop_mappers
"n"
"c"
"xs"
(
lnil
#
())
.
Class
map_sortG
Σ
A
`{
Countable
A
}
:=
{
map_sort_contributionG
:>
contributionG
Σ
(
gmultisetUR
A
);
map_sort_lockG
:>
lockG
Σ
;
}
.
Section
mapper
.
Context
`{
Countable
A
,
Countable
B
}
.
Context
`{
!
heapG
Σ
,
!
proto_chanG
Σ
,
map_sortG
Σ
A
}
(
N
:
namespace
)
.
Context
(
IA
:
A
→
val
→
iProp
Σ
)
(
IB
:
B
→
val
→
iProp
Σ
)
(
f
:
A
→
B
)
.
Local
Open
Scope
nat_scope
.
Definition
mapper_protocol_aux
(
rec
:
nat
-
d
>
gmultiset
A
-
d
>
iProto
Σ
)
:
nat
-
d
>
gmultiset
A
-
d
>
iProto
Σ
:=
λ
i
X
,
let
rec
:
nat
→
gmultiset
A
→
iProto
Σ
:=
rec
in
(
if
i
is
0
then
END
else
((
<!>
x
v
,
MSG
v
{{
IA
x
v
}};
rec
i
(
X
⊎
{[
x
]}))
<+>
rec
(
pred
i
)
X
)
<
{
⌜
i
≠
1
∨
X
=
∅
⌝
}
&
>
<
?
>
x
w
,
MSG
w
{{
⌜
x
∈
X
⌝
∧
IB
(
f
x
)
w
}};
rec
i
(
X
∖
{[
x
]}))
%
proto
.
Instance
mapper_protocol_aux_contractive
:
Contractive
mapper_protocol_aux
.
Proof
.
solve_proper_prepare
.
f_equiv
.
solve_proto_contractive
.
Qed
.
Definition
mapper_protocol
:=
fixpoint
mapper_protocol_aux
.
Global
Instance
mapper_protocol_unfold
n
X
:
ProtoUnfold
(
mapper_protocol
n
X
)
(
mapper_protocol_aux
mapper_protocol
n
X
)
.
Proof
.
apply
proto_unfold_eq
,
(
fixpoint_unfold
mapper_protocol_aux
)
.
Qed
.
Definition
mapper_lock_inv
(
γ
:
gname
)
(
c
:
val
)
:
iProp
Σ
:=
(
∃
i
X
,
server
γ
i
X
∗
c
↣
iProto_dual
(
mapper_protocol
i
X
)
@
N
)
%
I
.
Lemma
mapper_spec
γ
(
ff
:
val
)
lk
c
q
:
(
∀
x
v
,
{{{
IA
x
v
}}}
ff
v
{{{
w
,
RET
w
;
IB
(
f
x
)
w
}}})
-∗
{{{
is_lock
N
lk
(
mapper_lock_inv
γ
c
)
∗
unlocked
N
lk
q
∗
client
γ
(
∅
:
gmultiset
A
)
}}}
mapper
ff
#
lk
c
{{{
RET
#
();
True
}}}
.
Proof
.
iIntros
"#Hf !>"
(
Φ
)
"(#Hlk & Hu & Hγ) HΦ"
.
iLöb
as
"IH"
.
wp_rec
;
wp_pures
.
wp_apply
(
acquire_spec
with
"[$Hlk $Hu]"
);
iIntros
"[Hl H]"
.
iDestruct
"H"
as
(
i
X
)
"[Hs Hc]"
.
iDestruct
(
@
server_agree
with
"Hs Hγ"
)
as
%
[??];
destruct
i
as
[|
i
]=>
//=.
iAssert
⌜
S
i
≠
1
∨
X
=
∅
⌝%
I
as
%
?
.
{
destruct
i
as
[|
i
];
last
auto
with
lia
.
iDestruct
(
@
server_1_agree
with
"Hs Hγ"
)
as
%
?
%
leibniz_equiv
;
auto
.
}
wp_select
.
wp_branch
;
wp_pures
;
last
first
.
{
iMod
(
@
dealloc_client
with
"Hs Hγ"
)
as
"Hs /="
.
wp_apply
(
release_spec
with
"[$Hlk $Hl Hc Hs]"
)
.
{
iExists
i
,
_
.
iFrame
.
}
iIntros
"_"
.
by
iApply
"HΦ"
.
}
wp_recv
(
x
v
)
as
"HI"
.
iMod
(
@
update_client
with
"Hs Hγ"
)
as
"[Hs Hγ]"
.
{
apply
(
gmultiset_local_update_alloc
_
_
{[
x
]})
.
}
rewrite
left_id_L
.
wp_apply
(
release_spec
with
"[$Hlk $Hl Hc Hs]"
)
.
{
iExists
(
S
i
),
_
.
iFrame
.
}
clear
dependent
i
X
.
iIntros
"Hu"
.
wp_apply
(
"Hf"
with
"HI"
);
iIntros
(
w
)
"HI"
.
wp_apply
(
acquire_spec
with
"[$Hlk $Hu]"
);
iIntros
"[Hl H]"
.
iDestruct
"H"
as
(
i
X
)
"[Hs Hc]"
.
iDestruct
(
@
server_agree
with
"Hs Hγ"
)
as
%
[??
%
gmultiset_included
];
destruct
i
as
[|
i
]=>
//=.
wp_select
.
wp_send
with
"[$HI]"
.
{
by
rewrite
gmultiset_elem_of_singleton_subseteq
.
}
iMod
(
@
update_client
with
"Hs Hγ"
)
as
"[Hs Hγ]"
.
{
by
apply
(
gmultiset_local_update_dealloc
_
_
{[
x
]})
.
}
rewrite
gmultiset_difference_diag
.
wp_apply
(
release_spec
with
"[$Hlk $Hl Hc Hs]"
)
.
{
iExists
(
S
i
),
_
.
iFrame
.
}
iIntros
"Hu"
.
by
wp_apply
(
"IH"
with
"[$] [$]"
)
.
Qed
.
Lemma
start_mappers_spec
γ
(
n
:
nat
)
(
ff
:
val
)
lk
c
q
:
(
∀
x
v
,
{{{
IA
x
v
}}}
ff
v
{{{
w
,
RET
w
;
IB
(
f
x
)
w
}}})
-∗
{{{
is_lock
N
lk
(
mapper_lock_inv
γ
c
)
∗
unlocked
N
lk
q
∗
n
*
client
γ
(
∅:
gmultiset
A
)
}}}
start_mappers
#
n
ff
#
lk
c
{{{
RET
#
();
True
}}}
.
Proof
.
iIntros
"#Hf !>"
(
Φ
)
"(#Hlk & Hu & Hγs) HΦ"
.
iInduction
n
as
[|
n
]
"IH"
forall
(
q
);
wp_rec
;
wp_pures
;
simpl
.
{
by
iApply
"HΦ"
.
}
iDestruct
"Hγs"
as
"[Hγ Hγs]"
;
iDestruct
"Hu"
as
"[Hu Hu']"
.
wp_apply
(
wp_fork
with
"[Hγ Hu]"
)
.
{
iNext
.
wp_apply
(
mapper_spec
with
"Hf [$]"
);
auto
.
}
wp_pures
.
rewrite
Nat2Z
.
inj_succ
Z
.
sub_1_r
Z
.
pred_succ
.
wp_apply
(
"IH"
with
"[$] [$] [$]"
)
.
Qed
.
Lemma
loop_mappers_spec
(
n
:
nat
)
c
vs
xs
ws
X_send
xs_recv
:
(
n
=
0
→
X_send
=
∅
∧
xs
=
[])
→
{{{
c
↣
mapper_protocol
n
(
X_send
:
gmultiset
A
)
@
N
∗
([
∗
list
]
x
;
v
∈
xs
;
vs
,
IA
x
v
)
∗
([
∗
list
]
x
;
w
∈
xs_recv
;
ws
,
IB
(
f
x
)
w
)
}}}
loop_mappers
#
n
c
(
val_encode
vs
)
(
val_encode
ws
)
{{{
ys
ws
,
RET
(
val_encode
ws
);
⌜
ys
++
(
f
<$>
xs_recv
)
≡
ₚ
f
<$>
(
elements
X_send
++
xs
++
xs_recv
)
⌝
∗
[
∗
list
]
y
;
w
∈
ys
++
(
f
<$>
xs_recv
);
ws
,
IB
y
w
}}}
.
Proof
.
iIntros
(
Hn
Φ
)
"(Hc & Hxs & Hxs_recv) HΦ"
.
iLöb
as
"IH"
forall
(
n
vs
xs
ws
X_send
xs_recv
Hn
Φ
);
wp_rec
;
wp_pures
;
simpl
.
case_bool_decide
;
wp_pures
;
simplify_eq
/=.
{
destruct
Hn
as
[
->
->
];
first
lia
.
iApply
(
"HΦ"
$!
[]);
simpl
.
rewrite
big_sepL2_fmap_l
.
auto
.
}
destruct
n
as
[|
n
]=>
//=.
wp_branch
as
%
?|
%
_;
wp_pures
.
-
wp_apply
(
lisnil_spec
(
A
:=
val
)
with
"[//]"
);
iIntros
(_)
.
destruct
vs
as
[|
v
vs
],
xs
as
[|
x
xs
];
csimpl
;
try
done
;
wp_pures
.
+
wp_select
.
wp_pures
.
rewrite
Nat2Z
.
inj_succ
Z
.
sub_1_r
Z
.
pred_succ
.
iApply
(
"IH"
with
"[] Hc [//] [$] HΦ"
)
.
iPureIntro
;
naive_solver
.
+
iDestruct
"Hxs"
as
"[Hx Hxs]"
.
wp_select
.
wp_apply
(
lhead_spec
(
A
:=
val
)
with
"[//]"
);
iIntros
(_)
.
wp_send
with
"[$Hx]"
.
wp_apply
(
ltail_spec
(
A
:=
val
)
with
"[//]"
);
iIntros
(_)
.
wp_apply
(
"IH"
with
"[] Hc Hxs Hxs_recv"
);
first
done
.
iIntros
(
ys
ws'
)
.
rewrite
gmultiset_elements_disj_union
gmultiset_elements_singleton
-!
assoc_L
.
iApply
"HΦ"
.
-
wp_recv
(
x
w
)
as
(
HH
)
"HIfx"
.
wp_apply
(
lcons_spec
(
A
:=
val
)
with
"[//]"
);
iIntros
(_)
.
wp_apply
(
"IH"
$!
_
_
_
_
_
(_
::
_)
with
"[] Hc Hxs [HIfx Hxs_recv]"
);
first
done
.
{
simpl
;
iFrame
.
}
iIntros
(
ys
ws'
);
iDestruct
1
as
(
Hys
)
"H"
;
simplify_eq
/=.
iApply
(
"HΦ"
$!
(
ys
++
[
f
x
]))
.
iSplit
.
+
iPureIntro
.
rewrite
-
assoc_L
/=
Hys
.
rewrite
{
2
}(
gmultiset_disj_union_difference
{[
x
]}
X_send
)
-
?gmultiset_elem_of_singleton_subseteq
//.
rewrite
(
comm
disj_union
)
gmultiset_elements_disj_union
.
rewrite
gmultiset_elements_singleton
.
by
rewrite
-
assoc_L
(
assoc_L
_
[
x
])
(
comm
_
[
x
])
-!
assoc_L
.
+
by
rewrite
-
assoc_L
.
Qed
.
Lemma
mapper_service_spec
(
n
:
nat
)
(
ff
:
val
)
vs
xs
:
0
<
n
→
(
∀
x
v
,
{{{
IA
x
v
}}}
ff
v
{{{
w
,
RET
w
;
IB
(
f
x
)
w
}}})
-∗
{{{
[
∗
list
]
x
;
v
∈
xs
;
vs
,
IA
x
v
}}}
mapper_service
#
n
ff
(
val_encode
vs
)
{{{
ys
ws
,
RET
(
val_encode
ws
);
⌜
ys
≡
ₚ
f
<$>
xs
⌝
∗
[
∗
list
]
y
;
w
∈
ys
;
ws
,
IB
y
w
}}}
.
Proof
.
iIntros
(?)
"#Hf !>"
;
iIntros
(
Φ
)
"HI HΦ"
.
wp_lam
;
wp_pures
.
wp_apply
(
new_lock_spec
N
with
"[//]"
);
iIntros
(
lk
)
"[Hu Hlk]"
.
wp_apply
(
start_chan_proto_spec
N
(
mapper_protocol
n
∅
)
with
"[Hu Hlk]"
);
try
iNext
;
iIntros
(
c
)
"Hc"
.
{
wp_lam
.
iMod
(
contribution_initN
(
A
:=
gmultisetUR
A
)
n
)
as
(
γ
)
"[Hs Hγs]"
.
iMod
(
"Hlk"
$!
(
mapper_lock_inv
γ
c
)
with
"[Hc Hs]"
)
as
"#Hlk"
.
{
iExists
n
,
∅.
iFrame
.
}
wp_apply
(
start_mappers_spec
with
"Hf [$Hlk $Hu $Hγs]"
);
auto
.
}
wp_pures
.
wp_apply
(
lnil_spec
with
"[//]"
);
iIntros
(_)
.
wp_apply
(
loop_mappers_spec
_
_
_
_
[]
∅
[]
with
"[$Hc $HI //]"
);
first
lia
.
iIntros
(
ys
ws
)
.
rewrite
/=
!
right_id_L
gmultiset_elements_empty
.
iApply
"HΦ"
.
Qed
.
End
mapper
.
This diff is collapsed.
Click to expand it.
theories/utils/contribution.v
+
25
−
15
View file @
adb7d112
From
iris
.
base_logic
Require
Export
base_logic
lib
.
iprop
lib
.
own
.
From
iris
.
base_logic
Require
Export
base_logic
lib
.
iprop
lib
.
own
.
From
iris
.
proofmode
Require
Export
tactics
.
From
iris
.
proofmode
Require
Export
tactics
.
From
iris
.
algebra
Require
Import
excl
auth
csum
gmultiset
frac_auth
.
From
iris
.
algebra
Require
Import
excl
auth
csum
gmultiset
frac_auth
.
From
iris
.
algebra
Require
Export
local_updates
.
Class
contributionG
Σ
(
A
:
ucmraT
)
`{
!
CmraDiscrete
A
}
:=
{
Class
contributionG
Σ
(
A
:
ucmraT
)
`{
!
CmraDiscrete
A
}
:=
{
contribution_inG
:>
inG
Σ
contribution_inG
:>
inG
Σ
...
@@ -19,6 +20,12 @@ Definition client `{contributionG Σ A} (γ : gname) (x : A) : iProp Σ :=
...
@@ -19,6 +20,12 @@ Definition client `{contributionG Σ A} (γ : gname) (x : A) : iProp Σ :=
Typeclasses
Opaque
client
.
Typeclasses
Opaque
client
.
Instance
:
Params
(
@
client
)
5
.
Instance
:
Params
(
@
client
)
5
.
(** MOVE *)
Fixpoint
bi_mult
{
PROP
:
bi
}
(
n
:
nat
)
(
P
:
PROP
)
:
PROP
:=
match
n
with
O
=>
emp
|
S
n
=>
P
∗
bi_mult
n
P
end
%
I
.
Arguments
bi_mult
{_}
_
_
%
I
.
Notation
"n * P"
:=
(
bi_mult
n
P
)
:
bi_scope
.
Section
contribution
.
Section
contribution
.
Context
`{
contributionG
Σ
A
}
.
Context
`{
contributionG
Σ
A
}
.
Implicit
Types
x
y
:
A
.
Implicit
Types
x
y
:
A
.
...
@@ -77,11 +84,10 @@ Section contribution.
...
@@ -77,11 +84,10 @@ Section contribution.
by
destruct
n
.
by
destruct
n
.
Qed
.
Qed
.
Lemma
alloc_client
γ
n
x
x'
y'
:
Lemma
alloc_client
γ
n
x
:
(
x
,
ε
)
~l
~>
(
x'
,
y'
)
→
server
γ
n
x
==∗
server
γ
(
S
n
)
x
∗
client
γ
ε
.
server
γ
n
x
==∗
server
γ
(
S
n
)
x'
∗
client
γ
y'
.
Proof
.
Proof
.
intros
Hup
.
rewrite
/
server
/
client
.
rewrite
/
server
/
client
.
destruct
(
decide
(
n
=
0
))
as
[
->
|?];
case_decide
;
try
done
.
destruct
(
decide
(
n
=
0
))
as
[
->
|?];
case_decide
;
try
done
.
-
iDestruct
1
as
(
Hx
)
"[Hs Hc]"
;
setoid_subst
.
-
iDestruct
1
as
(
Hx
)
"[Hs Hc]"
;
setoid_subst
.
iMod
(
own_update_2
with
"Hs Hc"
)
as
"[$ $]"
;
last
done
.
iMod
(
own_update_2
with
"Hs Hc"
)
as
"[$ $]"
;
last
done
.
...
@@ -99,28 +105,24 @@ Section contribution.
...
@@ -99,28 +105,24 @@ Section contribution.
by
apply
option_local_update
,
csum_local_update_l
,
prod_local_update_2
.
by
apply
option_local_update
,
csum_local_update_l
,
prod_local_update_2
.
Qed
.
Qed
.
Lemma
dealloc_client
γ
n
x
y
:
Lemma
dealloc_client
γ
n
x
:
Cancelable
y
→
server
γ
n
x
-∗
client
γ
ε
==∗
server
γ
(
pred
n
)
x
.
server
γ
n
(
x
⋅
y
)
-∗
client
γ
y
==∗
server
γ
(
pred
n
)
x
.
Proof
.
Proof
.
iIntros
(?)
"Hs Hc"
.
iDestruct
(
server_valid
with
"Hs"
)
as
%
Hv
.
iIntros
"Hs Hc"
.
iDestruct
(
server_valid
with
"Hs"
)
as
%
Hv
.
destruct
(
decide
(
n
=
1
))
as
[
->
|];
simpl
.
destruct
(
decide
(
n
=
1
))
as
[
->
|];
simpl
.
-
iDestruct
(
server_1_agree
with
"Hs Hc"
)
as
%
Hxy
.
-
iDestruct
(
server_1_agree
with
"Hs Hc"
)
as
%->
.
move
:
Hxy
.
rewrite
{
1
}(
comm
_
x
)
-
{
2
}(
right_id
ε
_
y
)=>
/
cancelable
.
rewrite
{
1
}
comm
=>
/
(_
Hv
)
->
.
rewrite
left_id
.
rewrite
/
server
/
client
;
repeat
case_decide
=>
//.
rewrite
/
server
/
client
;
repeat
case_decide
=>
//.
iMod
(
own_update_2
with
"Hs Hc"
)
as
"[$ $]"
;
last
done
.
iMod
(
own_update_2
with
"Hs Hc"
)
as
"[$ $]"
;
last
done
.
by
apply
auth_update
,
option_local_update
,
(
replace_local_update
_
_)
.
by
apply
auth_update
,
option_local_update
,
(
replace_local_update
_
_)
.
-
iDestruct
(
server_agree
with
"Hs Hc"
)
as
%
[?
[
z
Hxy
]]
.
-
iDestruct
(
server_agree
with
"Hs Hc"
)
as
%
[?
[
z
->
]]
.
move
:
Hxy
.
rewrite
(
comm
_
x
)=>
/
cancelable
.
rewrite
{
1
}
comm
=>
/
(_
Hv
)
->
.
rewrite
/
server
/
client
.
destruct
n
as
[|[|
n
]];
case_decide
=>
//=.
rewrite
/
server
/
client
.
destruct
n
as
[|[|
n
]];
case_decide
=>
//=.
iApply
(
own_update_2
with
"Hs Hc"
)
.
apply
auth_update_dealloc
.
iApply
(
own_update_2
with
"Hs Hc"
)
.
apply
auth_update_dealloc
.
rewrite
-
(
right_id
_
_
(
Some
(
Cinl
(
1
%
positive
,
_))))
.
rewrite
-
(
right_id
_
_
(
Some
(
Cinl
(
1
%
positive
,
_))))
.
rewrite
Nat2Pos
.
inj_succ
//
-
Pos
.
add_1_l
.
rewrite
Nat2Pos
.
inj_succ
//
-
Pos
.
add_1_l
.
rewrite
-
pair_op
-
Cinl_op
Some_op
.
apply
(
cancel_local_update
_
_
_)
.
rewrite
-
pair_op
-
Cinl_op
Some_op
left_id
.
apply
(
cancel_local_update
_
_
_)
.
Qed
.
Qed
.
Lemma
update_client
γ
n
x
y
x'
y'
:
Lemma
update_client
γ
n
x
y
x'
y'
:
(
x
,
y
)
~l
~>
(
x'
,
y'
)
→
(
x
,
y
)
~l
~>
(
x'
,
y'
)
→
server
γ
n
x
-∗
client
γ
y
==∗
server
γ
n
x'
∗
client
γ
y'
.
server
γ
n
x
-∗
client
γ
y
==∗
server
γ
n
x'
∗
client
γ
y'
.
...
@@ -137,4 +139,12 @@ Section contribution.
...
@@ -137,4 +139,12 @@ Section contribution.
by
apply
auth_update
,
option_local_update
,
by
apply
auth_update
,
option_local_update
,
csum_local_update_l
,
prod_local_update_2
.
csum_local_update_l
,
prod_local_update_2
.
Qed
.
Qed
.
(** Derived *)
Lemma
contribution_initN
n
:
(|
==>
∃
γ
,
server
γ
n
ε
∗
n
*
client
γ
ε
)
%
I
.
Proof
.
iMod
(
contribution_init
)
as
(
γ
)
"Hs"
.
iExists
γ
.
iInduction
n
as
[|
n
]
"IH"
;
first
by
iFrame
.
iMod
(
"IH"
with
"Hs"
)
as
"[Hs $]"
.
by
iApply
alloc_client
.
Qed
.
End
contribution
.
End
contribution
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment