Skip to content
Snippets Groups Projects
Commit 1113f98e authored by Ralf Jung's avatar Ralf Jung
Browse files

coq formatting

parent 091265d4
No related branches found
No related tags found
No related merge requests found
...@@ -7,11 +7,11 @@ Require Import ModuRes.PCM ModuRes.UPred ModuRes.BI. ...@@ -7,11 +7,11 @@ Require Import ModuRes.PCM ModuRes.UPred ModuRes.BI.
(* This interface keeps some of the details of the solution opaque *) (* This interface keeps some of the details of the solution opaque *)
Module Type WORLD_PROP (Res : PCM_T). Module Type WORLD_PROP (Res : PCM_T).
(* PreProp: The solution to the recursive equation. Equipped with a discrete order *) (* PreProp: The solution to the recursive equation. Equipped with a discrete order. *)
Parameter PreProp : cmtyp. Parameter PreProp : cmtyp.
Instance PProp_preo: preoType PreProp := disc_preo PreProp. Instance PProp_preo : preoType PreProp := disc_preo PreProp.
Instance PProp_pcm : pcmType PreProp := disc_pcm PreProp. Instance PProp_pcm : pcmType PreProp := disc_pcm PreProp.
Instance PProp_ext : extensible PreProp := disc_ext PreProp. Instance PProp_ext : extensible PreProp := disc_ext PreProp.
(* Defines Worlds, Propositions *) (* Defines Worlds, Propositions *)
Definition Wld := nat -f> PreProp. Definition Wld := nat -f> PreProp.
...@@ -24,7 +24,6 @@ Module Type WORLD_PROP (Res : PCM_T). ...@@ -24,7 +24,6 @@ Module Type WORLD_PROP (Res : PCM_T).
Instance Props_preo : preoType Props| 1 := _. Instance Props_preo : preoType Props| 1 := _.
Instance Props_pcm : pcmType Props | 1 := _. Instance Props_pcm : pcmType Props | 1 := _.
(* Establish the recursion isomorphism *) (* Establish the recursion isomorphism *)
Parameter ı : PreProp -n> halve (cmfromType Props). Parameter ı : PreProp -n> halve (cmfromType Props).
Parameter ı' : halve (cmfromType Props) -n> PreProp. Parameter ı' : halve (cmfromType Props) -n> PreProp.
...@@ -32,6 +31,7 @@ Module Type WORLD_PROP (Res : PCM_T). ...@@ -32,6 +31,7 @@ Module Type WORLD_PROP (Res : PCM_T).
Axiom isoR: forall T, ı (ı' T) == T. Axiom isoR: forall T, ı (ı' T) == T.
End WORLD_PROP. End WORLD_PROP.
(* Now we come to the actual implementation *) (* Now we come to the actual implementation *)
Module WorldProp (Res : PCM_T) : WORLD_PROP Res. Module WorldProp (Res : PCM_T) : WORLD_PROP Res.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment