diff --git a/world_prop.v b/world_prop.v index 6108c4c892bcd29ca1884e73d2d6cf1dd05b6cc7..be2fd5e60f23e06ba605ab6b9c6f161570eb30e4 100644 --- a/world_prop.v +++ b/world_prop.v @@ -7,11 +7,11 @@ Require Import ModuRes.PCM ModuRes.UPred ModuRes.BI. (* This interface keeps some of the details of the solution opaque *) Module Type WORLD_PROP (Res : PCM_T). - (* PreProp: The solution to the recursive equation. Equipped with a discrete order *) + (* PreProp: The solution to the recursive equation. Equipped with a discrete order. *) Parameter PreProp : cmtyp. - Instance PProp_preo: preoType PreProp := disc_preo PreProp. - Instance PProp_pcm : pcmType PreProp := disc_pcm PreProp. - Instance PProp_ext : extensible PreProp := disc_ext PreProp. + Instance PProp_preo : preoType PreProp := disc_preo PreProp. + Instance PProp_pcm : pcmType PreProp := disc_pcm PreProp. + Instance PProp_ext : extensible PreProp := disc_ext PreProp. (* Defines Worlds, Propositions *) Definition Wld := nat -f> PreProp. @@ -24,7 +24,6 @@ Module Type WORLD_PROP (Res : PCM_T). Instance Props_preo : preoType Props| 1 := _. Instance Props_pcm : pcmType Props | 1 := _. - (* Establish the recursion isomorphism *) Parameter ı : PreProp -n> halve (cmfromType Props). Parameter ı' : halve (cmfromType Props) -n> PreProp. @@ -32,6 +31,7 @@ Module Type WORLD_PROP (Res : PCM_T). Axiom isoR: forall T, ı (ı' T) == T. End WORLD_PROP. + (* Now we come to the actual implementation *) Module WorldProp (Res : PCM_T) : WORLD_PROP Res.