Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Abhishek Anand
Iris
Commits
91a2d149
Commit
91a2d149
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Simplify and clean up wp_fix.
Shorten proofs and name variables that we introduce.
parent
1ae6f1c1
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/weakestpre_fix.v
+108
-156
108 additions, 156 deletions
program_logic/weakestpre_fix.v
with
108 additions
and
156 deletions
program_logic/weakestpre_fix.v
+
108
−
156
View file @
91a2d149
From
Coq
Require
Import
Wf_nat
.
From
Coq
Require
Import
Wf_nat
.
From
iris
.
program_logic
Require
Import
weakestpre
wsat
.
From
iris
.
program_logic
Require
Import
weakestpre
wsat
.
Local
Hint
Extern
10
(_
≤
_)
=>
omega
.
Local
Hint
Extern
10
(
@
eq
coPset
_
_)
=>
set_solver
.
Local
Hint
Extern
10
(
✓
{_}
_)
=>
repeat
match
goal
with
|
H
:
wsat
_
_
_
_
|
-
_
=>
apply
wsat_valid
in
H
;
last
omega
end
;
solve_validN
.
(** This files provides an alternative definition of wp in terms of a
(** This files provides an alternative definition of wp in terms of a fixpoint
fixpoint of a contractive function, rather than a CoInductive type.
of a contractive function, rather than a CoInductive type. This is how we define
This is how we define wp on paper.
wp on paper. We show that the two versions are equivalent. *)
We show that the two versions are equivalent. *)
Section
def
.
Section
def
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctor
}
.
Context
{
Λ
:
language
}
{
Σ
:
iFunctor
}
.
Local
Notation
iProp
:=
(
iProp
Λ
Σ
)
.
Local
Notation
iProp
:=
(
iProp
Λ
Σ
)
.
Local
Notation
coPsetC
:=
(
leibnizC
(
coPset
))
.
Definition
coPsetC
:=
leibnizC
(
coPset
)
.
Definition
pre_wp_def
(
wp
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
)
Program
Definition
wp_pre
(
E
:
coPset
)
(
e1
:
expr
Λ
)
(
Φ
:
valC
Λ
-
n
>
iProp
)
(
wp
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
)
(
n
:
nat
)
(
r1
:
iRes
Λ
Σ
)
:
Prop
:=
(
E
:
coPset
)
(
e1
:
expr
Λ
)
(
Φ
:
valC
Λ
-
n
>
iProp
)
:
iProp
:=
∀
rf
k
Ef
σ1
,
0
≤
k
<
n
→
E
∩
Ef
=
∅
→
{|
uPred_holds
n
r1
:=
∀
rf
k
Ef
σ1
,
wsat
(
S
k
)
(
E
∪
Ef
)
σ1
(
r1
⋅
rf
)
→
0
≤
k
<
n
→
E
∩
Ef
=
∅
→
(
∀
v
,
to_val
e1
=
Some
v
→
wsat
(
S
k
)
(
E
∪
Ef
)
σ1
(
r1
⋅
rf
)
→
∃
r2
,
Φ
v
(
S
k
)
r2
∧
wsat
(
S
k
)
(
E
∪
Ef
)
σ1
(
r2
⋅
rf
))
∧
(
∀
v
,
to_val
e1
=
Some
v
→
(
to_val
e1
=
None
→
0
<
k
→
∃
r2
,
Φ
v
(
S
k
)
r2
∧
wsat
(
S
k
)
(
E
∪
Ef
)
σ1
(
r2
⋅
rf
))
∧
reducible
e1
σ1
∧
(
to_val
e1
=
None
→
0
<
k
→
(
∀
e2
σ2
ef
,
prim_step
e1
σ1
e2
σ2
ef
→
reducible
e1
σ1
∧
∃
r2
r2'
,
(
∀
e2
σ2
ef
,
prim_step
e1
σ1
e2
σ2
ef
→
wsat
k
(
E
∪
Ef
)
σ2
(
r2
⋅
r2'
⋅
rf
)
∧
∃
r2
r2'
,
wp
E
e2
Φ
k
r2
∧
wsat
k
(
E
∪
Ef
)
σ2
(
r2
⋅
r2'
⋅
rf
)
∧
default
True
ef
(
λ
ef
,
wp
⊤
ef
(
cconst
True
%
I
)
k
r2'
)))
.
wp
E
e2
Φ
k
r2
∧
default
True
ef
(
λ
ef
,
wp
⊤
ef
(
cconst
True
%
I
)
k
r2'
)))
|}
.
Next
Obligation
.
intros
wp
E
e1
Φ
n
r1
r1'
Hwp
Hr1
rf
k
Ef
σ1
???;
simpl
in
*.
destruct
(
Hwp
rf
k
Ef
σ1
);
auto
.
by
rewrite
(
dist_le
_
_
_
_
Hr1
);
last
omega
.
Qed
.
Next
Obligation
.
intros
wp
E
e1
Φ
n1
n2
r1
?
Hwp
[
r2
?]
??
rf
k
Ef
σ1
???;
setoid_subst
.
destruct
(
Hwp
(
r2
⋅
rf
)
k
Ef
σ1
)
as
[
Hval
Hstep
];
rewrite
?assoc
;
auto
.
split
.
-
intros
v
Hv
.
destruct
(
Hval
v
Hv
)
as
[
r3
[??]]
.
exists
(
r3
⋅
r2
)
.
rewrite
-
assoc
.
eauto
using
uPred_weaken
,
cmra_included_l
.
-
intros
??
.
destruct
Hstep
as
[
Hred
Hpstep
];
auto
.
split
;
[
done
|]=>
e2
σ2
ef
?
.
edestruct
Hpstep
as
(
r3
&
r3'
&
?
&
?
&
?);
eauto
.
exists
r3
,
(
r3'
⋅
r2
);
split_and
?;
auto
.
+
by
rewrite
assoc
-
assoc
.
+
destruct
ef
;
simpl
in
*
;
eauto
using
uPred_weaken
,
cmra_included_l
.
Qed
.
Program
Definition
pre_wp
Lemma
wp_pre_contractive'
n
E
e
Φ1
Φ2
r
(
wp
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
)
(
wp1
wp2
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
)
:
(
E
:
coPset
)
(
e1
:
expr
Λ
)
(
Φ
:
valC
Λ
-
n
>
iProp
)
:
iProp
:=
(
∀
i
:
nat
,
i
<
n
→
wp1
≡
{
i
}
≡
wp2
)
→
Φ1
≡
{
n
}
≡
Φ2
→
{|
uPred_holds
:=
pre_wp_def
wp
E
e1
Φ
|}
.
wp_pre
wp1
E
e
Φ1
n
r
→
wp_pre
wp2
E
e
Φ2
n
r
.
Next
Obligation
.
Proof
.
intros
?????
r1
r1'
Hwp
EQr
.
intros
HI
HΦ
Hwp
rf
k
Ef
σ1
???
.
intros
????
Hk
??
.
edestruct
Hwp
as
[
Hval
Hstep
];
[
done
..|
|]
.
destruct
(
Hwp
rf
k
Ef
σ1
)
as
[
Hval
Hstep
];
auto
.
{
eapply
wsat_ne'
;
last
done
.
apply
(
dist_le
n
);
last
omega
.
split
.
by
rewrite
EQr
.
}
{
intros
v
?
.
destruct
(
Hval
v
)
as
(
r2
&
?
&
?);
auto
.
split
;
done
.
exists
r2
.
split
;
[
apply
HΦ
|];
auto
.
}
Qed
.
intros
??
.
destruct
Hstep
as
[
Hred
Hpstep
];
auto
.
Next
Obligation
.
split
;
[
done
|]=>
e2
σ2
ef
?
.
intros
????
n1
n2
r1
r2
Hwp
[
r3
Hr
]
Hn
Hvalid
.
destruct
(
Hpstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
[
done
..|]
.
intros
????
Hk
??
.
edestruct
(
Hwp
(
r3
⋅
rf
)
k
)
as
[
Hval
Hstep
];
[|
done
..|
|]
.
exists
r2
,
r2'
;
split_and
?;
auto
.
{
omega
.
}
-
apply
HI
with
k
;
auto
.
{
eapply
wsat_ne'
;
last
done
.
by
rewrite
Hr
assoc
.
}
assert
(
wp1
E
e2
Φ2
≡
{
n
}
≡
wp1
E
e2
Φ1
)
as
HwpΦ
by
(
by
rewrite
HΦ
)
.
split
.
apply
HwpΦ
;
auto
.
-
intros
v
Hv
.
destruct
(
Hval
v
Hv
)
as
[
r4
[
HΦ
Hw
]]
.
-
destruct
ef
as
[
ef
|];
simpl
in
*
;
last
done
.
exists
(
r4
⋅
r3
)
.
split
.
apply
HI
with
k
;
auto
.
+
eapply
uPred_weaken
;
first
exact
:
HΦ
;
eauto
.
Qed
.
*
by
eexists
.
Instance
wp_pre_ne
n
wp
E
e
:
Proper
(
dist
n
==>
dist
n
)
(
wp_pre
wp
E
e
)
.
*
apply
wsat_valid
in
Hw
;
last
done
.
solve_validN
.
Proof
.
+
by
rewrite
-
assoc
.
split
;
split
;
-
intros
??
.
edestruct
Hstep
as
[
Hred
Hpstep
];
[
done
..|]
.
eapply
wp_pre_contractive'
;
eauto
using
dist_le
,
(
symmetry
(
R
:=
dist
_))
.
split
;
first
done
.
intros
????
.
Qed
.
edestruct
Hpstep
as
(
r4
&
r4'
&
Hw
&
He2
&
Hef
);
[
done
..|]
.
exists
r4
,
(
r4'
⋅
r3
)
.
split_and
?
.
+
move
:
Hw
.
by
rewrite
-!
assoc
.
+
done
.
+
destruct
ef
;
last
done
.
eapply
uPred_weaken
;
first
exact
:
Hef
;
eauto
.
*
by
eexists
.
*
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
Qed
.
Local
Instance
pre_wp_ne
n
wp
E
e
:
Definition
wp_preC
Proper
(
dist
n
==>
dist
n
)
(
pre_wp
wp
E
e
)
.
(
wp
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
)
:
Proof
.
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
:=
cut
(
∀
n
Φ1
Φ2
,
Φ1
≡
{
n
}
≡
Φ2
→
∀
r
,
CofeMor
(
λ
E
:
coPsetC
,
CofeMor
(
λ
e
:
exprC
Λ
,
CofeMor
(
wp_pre
wp
E
e
)))
.
pre_wp
wp
E
e
Φ1
n
r
→
pre_wp
wp
E
e
Φ2
n
r
)
.
{
intros
H
Φ1
Φ2
EQΦ
.
split
;
split
;
eapply
H
.
-
eauto
using
dist_le
.
-
symmetry
.
eauto
using
dist_le
.
}
clear
n
.
intros
n
Φ1
Φ2
EQΦ
r
Hwp
.
intros
????
Hk
??
.
edestruct
Hwp
as
[
Hval
Hstep
];
[
done
..|]
.
split
.
-
intros
??
.
edestruct
Hval
as
[
r2
[
HΦ
Hw
]];
[
done
..|]
.
exists
r2
.
split
;
last
done
.
apply
EQΦ
,
HΦ
.
+
omega
.
+
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
-
intros
??
.
edestruct
Hstep
as
[
Hred
Hpstep
];
[
done
..|]
.
split
;
first
done
.
intros
????
.
edestruct
Hpstep
as
(
r2
&
r2'
&
Hw
&
He2
&
Hef
);
[
done
..|]
.
exists
r2
,
r2'
.
split_and
?;
try
done
.
eapply
uPred_holds_ne
,
He2
.
+
apply
(
dist_le
n
);
last
omega
.
by
rewrite
-
EQΦ
.
+
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
Qed
.
Definition
pre_wp_mor
wp
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
:=
Local
Instance
pre_wp_contractive
:
Contractive
wp_preC
.
CofeMor
(
λ
E
:
coPsetC
,
CofeMor
(
λ
e
:
exprC
Λ
,
CofeMor
(
pre_wp
wp
E
e
)))
.
Proof
.
split
;
split
;
eapply
wp_pre_contractive'
;
auto
using
(
symmetry
(
R
:=
dist
_))
.
Qed
.
Local
Instance
pre_wp_contractive
:
Contractive
pre_wp_mor
.
Definition
wp_fix
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
:=
Proof
.
fixpoint
wp_preC
.
cut
(
∀
n
(
wp1
wp2
:
coPsetC
-
n
>
exprC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
),
(
∀
i
:
nat
,
i
<
n
→
wp1
≡
{
i
}
≡
wp2
)
→
∀
E
e
Φ
r
,
pre_wp
wp1
E
e
Φ
n
r
→
pre_wp
wp2
E
e
Φ
n
r
)
.
{
intros
H
n
wp1
wp2
HI
.
split
;
split
;
eapply
H
;
intros
.
-
apply
HI
.
omega
.
-
symmetry
.
apply
HI
.
omega
.
}
intros
n
wp1
wp2
HI
E
e1
Φ
r1
Hwp
.
intros
????
Hk
??
.
edestruct
Hwp
as
[
Hval
Hstep
];
[
done
..|]
.
split
;
first
done
.
intros
??
.
edestruct
Hstep
as
[
Hred
Hpstep
];
[
done
..|]
.
split
;
first
done
.
intros
????
.
edestruct
Hpstep
as
(
r2
&
r2'
&
Hw
&
He2
&
Hef
);
[
done
..|]
.
exists
r2
,
r2'
.
split_and
?;
try
done
.
-
eapply
uPred_holds_ne
,
He2
.
+
apply
HI
.
omega
.
+
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
-
destruct
ef
;
last
done
.
eapply
uPred_holds_ne
,
Hef
.
+
apply
HI
.
omega
.
+
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
Qed
.
Definition
wp_fix
:
coPsetC
-
n
>
ex
prC
Λ
-
n
>
(
valC
Λ
-
n
>
iProp
)
-
n
>
iProp
:=
Lemma
wp_fix_unfold
E
e
Φ
:
wp_fix
E
e
Φ
⊣⊢
wp_
pr
e
C
wp_fix
E
e
Φ
.
fixpoint
pre_wp_mor
.
Proof
.
by
rewrite
/
wp_fix
-
fixpoint_unfold
.
Qed
.
Lemma
wp_fix_unfold
E
e
Φ
:
pre_wp_mor
wp_fix
E
e
Φ
⊣⊢
wp_fix
E
e
Φ
.
Lemma
wp_fix_correct
E
e
(
Φ
:
valC
Λ
-
n
>
iProp
)
:
wp_fix
E
e
Φ
⊣⊢
wp
E
e
Φ
.
Proof
.
rewrite
-
fixpoint_unfold
.
done
.
Qed
.
Proof
.
split
=>
n
r
Hr
.
rewrite
wp_eq
/
wp_def
{
2
}
/
uPred_holds
.
Lemma
wp_fix_sound
(
E
:
coPset
)
(
e
:
expr
Λ
)
(
Φ
:
val
Λ
->
iProp
)
split
;
revert
r
E
e
Φ
Hr
.
(
Hproper
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(
Φ
:
valC
Λ
->
iProp
))
:
-
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
r1
E
e
Φ
?
Hwp
.
wp_fix
E
e
(
@
CofeMor
_
_
_
Hproper
)
⊢
wp
E
e
Φ
.
Proof
.
split
.
rewrite
wp_eq
/
wp_def
{
2
}
/
uPred_holds
.
intros
n
.
revert
E
e
Φ
Hproper
.
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
E
e
Φ
Hproper
r1
Hr1
Hwp
.
case
EQ
:
(
to_val
e
)=>[
v
|]
.
case
EQ
:
(
to_val
e
)=>[
v
|]
.
-
rewrite
-
(
of_to_val
_
_
EQ
)
{
IH
}
.
constructor
.
rewrite
pvs_eq
.
+
rewrite
-
(
of_to_val
_
_
EQ
)
{
IH
}
.
constructor
.
rewrite
pvs_eq
.
intros
rf
k
Ef
σ
???
.
destruct
k
;
first
(
exfalso
;
omega
)
.
intros
rf
[|
k
]
Ef
σ
???
;
first
omega
.
apply
wp_fix_unfold
in
Hwp
;
last
done
.
apply
wp_fix_unfold
in
Hwp
;
last
done
.
e
destruct
(
Hwp
rf
k
Ef
σ
);
e
auto
with
omega
;
set_solver
.
destruct
(
Hwp
rf
k
Ef
σ
);
auto
.
-
constructor
;
first
done
.
intros
????
Hk
??
.
+
constructor
;
[
done
|]=>
rf
k
Ef
σ1
?
??
.
apply
wp_fix_unfold
in
Hwp
;
last
done
.
apply
wp_fix_unfold
in
Hwp
;
last
done
.
edestruct
Hwp
as
[
Hval
Hstep
];
[|
done
..|];
first
omega
.
destruct
(
Hwp
rf
k
Ef
σ1
)
as
[
Hval
[
Hred
Hpstep
]];
auto
.
edestruct
Hstep
as
[
Hred
Hpstep
];
[
done
|
omega
|]
.
clear
Hstep
.
split
;
[
done
|]=>
e2
σ2
ef
?
.
split
;
first
done
.
intros
????
.
destruct
(
Hpstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
[
done
..|]
.
edestruct
Hpstep
as
(
r2
&
r2'
&
Hw
&
He2
&
Hef
);
[
done
..|]
.
exists
r2
,
r2'
;
split_and
?;
auto
.
exists
r2
,
r2'
.
split_and
?;
first
done
.
intros
?
->
.
change
(
weakestpre
.
wp_pre
⊤
(
cconst
True
%
I
)
e'
k
r2'
);
eauto
.
+
apply
:
IH
;
last
done
;
first
omega
.
-
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
r1
E
e
Φ
?
Hwp
.
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
apply
wp_fix_unfold
;
[
done
|]=>
rf
k
Ef
σ1
???
.
split
.
+
intros
e'
?
.
subst
ef
.
apply
:
IH
;
last
done
;
first
omega
.
+
intros
v
Hval
.
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
destruct
Hwp
as
[???
Hpvs
|];
rewrite
?to_of_val
in
Hval
;
simplify_eq
/=.
Qed
.
Lemma
wp_fix_complete
(
E
:
coPset
)
(
e
:
expr
Λ
)
(
Φ
:
val
Λ
->
iProp
)
(
Hproper
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(
Φ
:
valC
Λ
->
iProp
))
:
wp
E
e
Φ
⊢
wp_fix
E
e
(
@
CofeMor
_
_
_
Hproper
)
.
Proof
.
split
.
rewrite
wp_eq
/
wp_def
{
1
}
/
uPred_holds
.
intros
n
.
revert
E
e
Φ
Hproper
.
induction
n
as
[
n
IH
]
using
lt_wf_ind
=>
E
e
Φ
Hproper
r1
Hr1
Hwp
.
apply
wp_fix_unfold
;
first
done
.
intros
rf
k
Ef
σ1
???
.
split
.
-
intros
?
Hval
.
destruct
Hwp
as
[???
Hpvs
|];
last
by
destruct
(
to_val
e1
)
.
rewrite
pvs_eq
in
Hpvs
.
rewrite
pvs_eq
in
Hpvs
.
edestruct
(
Hpvs
rf
(
S
k
)
Ef
σ1
)
as
(
r2
&
?
&
?);
[
omega
|
set_solver
|
done
|]
.
destruct
(
Hpvs
rf
(
S
k
)
Ef
σ1
)
as
(
r2
&
?
&
?);
eauto
.
exists
r2
.
split
;
last
done
.
rewrite
to_of_val
in
Hval
.
+
intros
Hval
?
.
by
simplify_option_eq
.
destruct
Hwp
as
[|????
Hwp
];
rewrite
?to_of_val
in
Hval
;
simplify_eq
/=.
-
intros
Hval
?
.
destruct
Hwp
as
[|???
_
Hwp
]
.
edestruct
(
Hwp
rf
k
Ef
σ1
)
as
[?
Hpstep
];
auto
.
{
by
rewrite
to_of_val
in
Hval
.
}
split
;
[
done
|]=>
e2
σ2
ef
?
.
edestruct
Hwp
as
[?
Hpstep
];
try
done
;
first
omega
;
[]
.
destruct
(
Hpstep
e2
σ2
ef
)
as
(
r2
&
r2'
&
?
&
?
&
?);
auto
.
split
;
first
done
.
exists
r2
,
r2'
.
destruct
ef
;
simpl
;
auto
.
intros
????
.
edestruct
Hpstep
as
(
r2
&
r2'
&
Hw
&
He2
&
Hef
);
[
done
..|]
.
Qed
.
exists
r2
,
r2'
.
split_and
?;
first
done
.
+
apply
IH
,
He2
;
first
omega
.
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
+
destruct
ef
;
last
done
.
apply
IH
,
Hef
;
first
omega
;
last
done
.
apply
wsat_valid
in
Hw
;
last
omega
.
solve_validN
.
Qed
.
End
def
.
End
def
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment