From 91a2d149011fd1bd9cc2a73380348e38eaa97970 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Fri, 18 Mar 2016 17:05:47 +0100 Subject: [PATCH] Simplify and clean up wp_fix. Shorten proofs and name variables that we introduce. --- program_logic/weakestpre_fix.v | 264 ++++++++++++++------------------- 1 file changed, 108 insertions(+), 156 deletions(-) diff --git a/program_logic/weakestpre_fix.v b/program_logic/weakestpre_fix.v index 80c5862e9..3e6586224 100644 --- a/program_logic/weakestpre_fix.v +++ b/program_logic/weakestpre_fix.v @@ -1,172 +1,124 @@ From Coq Require Import Wf_nat. From iris.program_logic Require Import weakestpre wsat. +Local Hint Extern 10 (_ ≤ _) => omega. +Local Hint Extern 10 (@eq coPset _ _) => set_solver. +Local Hint Extern 10 (✓{_} _) => + repeat match goal with + | H : wsat _ _ _ _ |- _ => apply wsat_valid in H; last omega + end; solve_validN. -(** This files provides an alternative definition of wp in terms of a - fixpoint of a contractive function, rather than a CoInductive type. - This is how we define wp on paper. - We show that the two versions are equivalent. *) - +(** This files provides an alternative definition of wp in terms of a fixpoint +of a contractive function, rather than a CoInductive type. This is how we define +wp on paper. We show that the two versions are equivalent. *) Section def. - Context {Λ : language} {Σ : iFunctor}. - Local Notation iProp := (iProp Λ Σ). - - Definition coPsetC := leibnizC (coPset). +Context {Λ : language} {Σ : iFunctor}. +Local Notation iProp := (iProp Λ Σ). +Local Notation coPsetC := (leibnizC (coPset)). - Definition pre_wp_def (wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) - (E : coPset) (e1 : expr Λ) (Φ : valC Λ -n> iProp) - (n : nat) (r1 : iRes Λ Σ) : Prop := - ∀ rf k Ef σ1, 0 ≤ k < n → E ∩ Ef = ∅ → - wsat (S k) (E ∪ Ef) σ1 (r1 ⋅ rf) → - (∀ v, to_val e1 = Some v → - ∃ r2, Φ v (S k) r2 ∧ wsat (S k) (E ∪ Ef) σ1 (r2 ⋅ rf)) ∧ - (to_val e1 = None → 0 < k → - reducible e1 σ1 ∧ - (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → - ∃ r2 r2', - wsat k (E ∪ Ef) σ2 (r2 ⋅ r2' ⋅ rf) ∧ - wp E e2 Φ k r2 ∧ - default True ef (λ ef, wp ⊤ ef (cconst True%I) k r2'))). +Program Definition wp_pre + (wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) + (E : coPset) (e1 : expr Λ) (Φ : valC Λ -n> iProp) : iProp := + {| uPred_holds n r1 := ∀ rf k Ef σ1, + 0 ≤ k < n → E ∩ Ef = ∅ → + wsat (S k) (E ∪ Ef) σ1 (r1 ⋅ rf) → + (∀ v, to_val e1 = Some v → + ∃ r2, Φ v (S k) r2 ∧ wsat (S k) (E ∪ Ef) σ1 (r2 ⋅ rf)) ∧ + (to_val e1 = None → 0 < k → + reducible e1 σ1 ∧ + (∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef → + ∃ r2 r2', + wsat k (E ∪ Ef) σ2 (r2 ⋅ r2' ⋅ rf) ∧ + wp E e2 Φ k r2 ∧ + default True ef (λ ef, wp ⊤ ef (cconst True%I) k r2'))) |}. +Next Obligation. + intros wp E e1 Φ n r1 r1' Hwp Hr1 rf k Ef σ1 ???; simpl in *. + destruct (Hwp rf k Ef σ1); auto. + by rewrite (dist_le _ _ _ _ Hr1); last omega. +Qed. +Next Obligation. + intros wp E e1 Φ n1 n2 r1 ? Hwp [r2 ?] ?? rf k Ef σ1 ???; setoid_subst. + destruct (Hwp (r2 ⋅ rf) k Ef σ1) as [Hval Hstep]; rewrite ?assoc; auto. + split. + - intros v Hv. destruct (Hval v Hv) as [r3 [??]]. + exists (r3 ⋅ r2). rewrite -assoc. eauto using uPred_weaken, cmra_included_l. + - intros ??. destruct Hstep as [Hred Hpstep]; auto. + split; [done|]=> e2 σ2 ef ?. + edestruct Hpstep as (r3&r3'&?&?&?); eauto. + exists r3, (r3' ⋅ r2); split_and?; auto. + + by rewrite assoc -assoc. + + destruct ef; simpl in *; eauto using uPred_weaken, cmra_included_l. +Qed. - Program Definition pre_wp - (wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) - (E : coPset) (e1 : expr Λ) (Φ : valC Λ -n> iProp) : iProp := - {| uPred_holds := pre_wp_def wp E e1 Φ |}. - Next Obligation. - intros ????? r1 r1' Hwp EQr. - intros ???? Hk ??. edestruct Hwp as [Hval Hstep]; [done..| |]. - { eapply wsat_ne'; last done. apply (dist_le n); last omega. - by rewrite EQr. } - split; done. - Qed. - Next Obligation. - intros ???? n1 n2 r1 r2 Hwp [r3 Hr] Hn Hvalid. - intros ???? Hk ??. edestruct (Hwp (r3 ⋅ rf) k) as [Hval Hstep]; [|done..| |]. - { omega. } - { eapply wsat_ne'; last done. by rewrite Hr assoc. } - split. - - intros v Hv. destruct (Hval v Hv) as [r4 [HΦ Hw]]. - exists (r4 ⋅ r3). split. - + eapply uPred_weaken; first exact: HΦ; eauto. - * by eexists. - * apply wsat_valid in Hw; last done. solve_validN. - + by rewrite -assoc. - - intros ??. edestruct Hstep as [Hred Hpstep]; [done..|]. - split; first done. intros ????. - edestruct Hpstep as (r4 & r4' & Hw & He2 & Hef); [done..|]. - exists r4, (r4' ⋅ r3). split_and?. - + move: Hw. by rewrite -!assoc. - + done. - + destruct ef; last done. - eapply uPred_weaken; first exact: Hef; eauto. - * by eexists. - * apply wsat_valid in Hw; last omega. solve_validN. - Qed. +Lemma wp_pre_contractive' n E e Φ1 Φ2 r + (wp1 wp2 : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) : + (∀ i : nat, i < n → wp1 ≡{i}≡ wp2) → Φ1 ≡{n}≡ Φ2 → + wp_pre wp1 E e Φ1 n r → wp_pre wp2 E e Φ2 n r. +Proof. + intros HI HΦ Hwp rf k Ef σ1 ???. + destruct (Hwp rf k Ef σ1) as [Hval Hstep]; auto. + split. + { intros v ?. destruct (Hval v) as (r2&?&?); auto. + exists r2. split; [apply HΦ|]; auto. } + intros ??. destruct Hstep as [Hred Hpstep]; auto. + split; [done|]=> e2 σ2 ef ?. + destruct (Hpstep e2 σ2 ef) as (r2&r2'&?&?&?); [done..|]. + exists r2, r2'; split_and?; auto. + - apply HI with k; auto. + assert (wp1 E e2 Φ2 ≡{n}≡ wp1 E e2 Φ1) as HwpΦ by (by rewrite HΦ). + apply HwpΦ; auto. + - destruct ef as [ef|]; simpl in *; last done. + apply HI with k; auto. +Qed. +Instance wp_pre_ne n wp E e : Proper (dist n ==> dist n) (wp_pre wp E e). +Proof. + split; split; + eapply wp_pre_contractive'; eauto using dist_le, (symmetry (R:=dist _)). +Qed. - Local Instance pre_wp_ne n wp E e : - Proper (dist n ==> dist n) (pre_wp wp E e). - Proof. - cut (∀ n Φ1 Φ2, Φ1 ≡{n}≡ Φ2 → ∀ r, - pre_wp wp E e Φ1 n r → pre_wp wp E e Φ2 n r). - { intros H Φ1 Φ2 EQΦ. split; split; eapply H. - - eauto using dist_le. - - symmetry. eauto using dist_le. } - clear n. intros n Φ1 Φ2 EQΦ r Hwp. - intros ???? Hk ??. edestruct Hwp as [Hval Hstep]; [done..|]. - split. - - intros ??. edestruct Hval as [r2 [HΦ Hw]]; [done..|]. - exists r2. split; last done. apply EQΦ, HΦ. - + omega. - + apply wsat_valid in Hw; last omega. solve_validN. - - intros ??. edestruct Hstep as [Hred Hpstep]; [done..|]. - split; first done. intros ????. - edestruct Hpstep as (r2 & r2' & Hw & He2 & Hef); [done..|]. - exists r2, r2'. split_and?; try done. - eapply uPred_holds_ne, He2. - + apply (dist_le n); last omega. by rewrite -EQΦ. - + apply wsat_valid in Hw; last omega. solve_validN. - Qed. +Definition wp_preC + (wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) : + coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp := + CofeMor (λ E : coPsetC, CofeMor (λ e : exprC Λ, CofeMor (wp_pre wp E e))). - Definition pre_wp_mor wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp := - CofeMor (λ E : coPsetC, CofeMor (λ e : exprC Λ, CofeMor (pre_wp wp E e))). +Local Instance pre_wp_contractive : Contractive wp_preC. +Proof. + split; split; eapply wp_pre_contractive'; auto using (symmetry (R:=dist _)). +Qed. - Local Instance pre_wp_contractive : Contractive pre_wp_mor. - Proof. - cut (∀ n (wp1 wp2 : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp), - (∀ i : nat, i < n → wp1 ≡{i}≡ wp2) → ∀ E e Φ r, - pre_wp wp1 E e Φ n r → pre_wp wp2 E e Φ n r). - { intros H n wp1 wp2 HI. split; split; eapply H; intros. - - apply HI. omega. - - symmetry. apply HI. omega. } - intros n wp1 wp2 HI E e1 Φ r1 Hwp. - intros ???? Hk ??. edestruct Hwp as [Hval Hstep]; [done..|]. - split; first done. - intros ??. edestruct Hstep as [Hred Hpstep]; [done..|]. - split; first done. intros ????. - edestruct Hpstep as (r2 & r2' & Hw & He2 & Hef); [done..|]. - exists r2, r2'. split_and?; try done. - - eapply uPred_holds_ne, He2. - + apply HI. omega. - + apply wsat_valid in Hw; last omega. solve_validN. - - destruct ef; last done. eapply uPred_holds_ne, Hef. - + apply HI. omega. - + apply wsat_valid in Hw; last omega. solve_validN. - Qed. +Definition wp_fix : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp := + fixpoint wp_preC. - Definition wp_fix : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp := - fixpoint pre_wp_mor. +Lemma wp_fix_unfold E e Φ : wp_fix E e Φ ⊣⊢ wp_preC wp_fix E e Φ. +Proof. by rewrite /wp_fix -fixpoint_unfold. Qed. - Lemma wp_fix_unfold E e Φ : pre_wp_mor wp_fix E e Φ ⊣⊢ wp_fix E e Φ. - Proof. rewrite -fixpoint_unfold. done. Qed. - - Lemma wp_fix_sound (E : coPset) (e : expr Λ) (Φ : val Λ -> iProp) - (Hproper : ∀ n, Proper (dist n ==> dist n) (Φ : valC Λ -> iProp)) : - wp_fix E e (@CofeMor _ _ _ Hproper) ⊢ wp E e Φ. - Proof. - split. rewrite wp_eq /wp_def {2}/uPred_holds. - intros n. revert E e Φ Hproper. - induction n as [n IH] using lt_wf_ind=> E e Φ Hproper r1 Hr1 Hwp. +Lemma wp_fix_correct E e (Φ : valC Λ -n> iProp) : wp_fix E e Φ ⊣⊢ wp E e Φ. +Proof. + split=> n r Hr. rewrite wp_eq /wp_def {2}/uPred_holds. + split; revert r E e Φ Hr. + - induction n as [n IH] using lt_wf_ind=> r1 E e Φ ? Hwp. case EQ: (to_val e)=>[v|]. - - rewrite -(of_to_val _ _ EQ) {IH}. constructor. rewrite pvs_eq. - intros rf k Ef σ ???. destruct k; first (exfalso; omega). + + rewrite -(of_to_val _ _ EQ) {IH}. constructor. rewrite pvs_eq. + intros rf [|k] Ef σ ???; first omega. apply wp_fix_unfold in Hwp; last done. - edestruct (Hwp rf k Ef σ); eauto with omega; set_solver. - - constructor; first done. intros ???? Hk ??. + destruct (Hwp rf k Ef σ); auto. + + constructor; [done|]=> rf k Ef σ1 ???. apply wp_fix_unfold in Hwp; last done. - edestruct Hwp as [Hval Hstep]; [|done..|]; first omega. - edestruct Hstep as [Hred Hpstep]; [done|omega|]. clear Hstep. - split; first done. intros ????. - edestruct Hpstep as (r2 & r2' & Hw & He2 & Hef); [done..|]. - exists r2, r2'. split_and?; first done. - + apply: IH; last done; first omega. - apply wsat_valid in Hw; last omega. solve_validN. - + intros e' ?. subst ef. apply: IH; last done; first omega. - apply wsat_valid in Hw; last omega. solve_validN. - Qed. - - Lemma wp_fix_complete (E : coPset) (e : expr Λ) (Φ : val Λ -> iProp) - (Hproper : ∀ n, Proper (dist n ==> dist n) (Φ : valC Λ -> iProp)) : - wp E e Φ ⊢ wp_fix E e (@CofeMor _ _ _ Hproper). - Proof. - split. rewrite wp_eq /wp_def {1}/uPred_holds. - intros n. revert E e Φ Hproper. - induction n as [n IH] using lt_wf_ind=> E e Φ Hproper r1 Hr1 Hwp. - apply wp_fix_unfold; first done. - intros rf k Ef σ1 ???. split. - - intros ? Hval. destruct Hwp as [??? Hpvs|]; last by destruct (to_val e1). + destruct (Hwp rf k Ef σ1) as [Hval [Hred Hpstep]]; auto. + split; [done|]=> e2 σ2 ef ?. + destruct (Hpstep e2 σ2 ef) as (r2&r2'&?&?&?); [done..|]. + exists r2, r2'; split_and?; auto. + intros ? ->. change (weakestpre.wp_pre ⊤ (cconst True%I) e' k r2'); eauto. + - induction n as [n IH] using lt_wf_ind=> r1 E e Φ ? Hwp. + apply wp_fix_unfold; [done|]=> rf k Ef σ1 ???. split. + + intros v Hval. + destruct Hwp as [??? Hpvs|]; rewrite ?to_of_val in Hval; simplify_eq/=. rewrite pvs_eq in Hpvs. - edestruct (Hpvs rf (S k) Ef σ1) as (r2 & ? & ?); [omega|set_solver|done|]. - exists r2. split; last done. rewrite to_of_val in Hval. - by simplify_option_eq. - - intros Hval ?. destruct Hwp as [|??? _ Hwp]. - { by rewrite to_of_val in Hval. } - edestruct Hwp as [? Hpstep]; try done; first omega; []. - split; first done. - intros ????. edestruct Hpstep as (r2 & r2' & Hw & He2 & Hef); [done..|]. - exists r2, r2'. split_and?; first done. - + apply IH, He2; first omega. - apply wsat_valid in Hw; last omega. solve_validN. - + destruct ef; last done. - apply IH, Hef; first omega; last done. - apply wsat_valid in Hw; last omega. solve_validN. - Qed. + destruct (Hpvs rf (S k) Ef σ1) as (r2&?&?); eauto. + + intros Hval ?. + destruct Hwp as [|???? Hwp]; rewrite ?to_of_val in Hval; simplify_eq/=. + edestruct (Hwp rf k Ef σ1) as [? Hpstep]; auto. + split; [done|]=> e2 σ2 ef ?. + destruct (Hpstep e2 σ2 ef) as (r2&r2'&?&?&?); auto. + exists r2, r2'. destruct ef; simpl; auto. +Qed. End def. -- GitLab