Newer
Older
Global Instance as_valid_forall {A : Type} (φ : A → Prop) (P : A → PROP) :
(∀ x, AsValid (φ x) (P x)) → AsValid (∀ x, φ x) (∀ x, P x).
Proof.
rewrite /AsValid=>H1. split=>H2.
- apply bi.forall_intro=>?. apply H1, H2.
- intros x. apply H1. revert H2. by rewrite (bi.forall_elim x).
Qed.
(* We add a useless hypothesis [BiEmbed PROP PROP'] in order to make
sure this iinstance is not used when there is no embedding between
PROP and PROP'.
The first [`{BiEmbed PROP PROP'}] is not considered as a premise by
Coq TC search mechanism because the rest of the hypothesis is dependent
on it. *)
Global Instance as_valid_embed `{BiEmbed PROP PROP'} (φ : Prop) (P : PROP) :
BiEmbed PROP PROP' →
AsValid0 φ P → AsValid φ ⎡P⎤.
Proof. rewrite /AsValid0 /AsValid=> _ ->. rewrite embed_valid //. Qed.
End bi_instances.
Section sbi_instances.
Context {PROP : sbi}.
Implicit Types P Q R : PROP.
(* FromAssumption *)
Global Instance from_assumption_later p P Q :
Jacques-Henri Jourdan
committed
FromAssumption p P Q → KnownRFromAssumption p P (▷ Q)%I.
Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply later_intro. Qed.
Global Instance from_assumption_laterN n p P Q :
Jacques-Henri Jourdan
committed
FromAssumption p P Q → KnownRFromAssumption p P (▷^n Q)%I.
Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply laterN_intro. Qed.
Global Instance from_assumption_except_0 p P Q :
Jacques-Henri Jourdan
committed
FromAssumption p P Q → KnownRFromAssumption p P (◇ Q)%I.
Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply except_0_intro. Qed.
Global Instance from_assumption_bupd `{BiBUpd PROP} p P Q :
Jacques-Henri Jourdan
committed
FromAssumption p P Q → KnownRFromAssumption p P (|==> Q).
Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply bupd_intro. Qed.
Global Instance from_assumption_fupd `{BiBUpdFUpd PROP} E p P Q :
Jacques-Henri Jourdan
committed
FromAssumption p P (|==> Q) → KnownRFromAssumption p P (|={E}=> Q)%I.
Proof. rewrite /KnownRFromAssumption /FromAssumption=>->. apply bupd_fupd. Qed.
Global Instance from_assumption_plainly_l_true `{BiPlainly PROP} P Q :
Jacques-Henri Jourdan
committed
FromAssumption true P Q → KnownLFromAssumption true (■ P) Q.
Jacques-Henri Jourdan
committed
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite persistently_elim plainly_elim_persistently.
Qed.
Global Instance from_assumption_plainly_l_false `{BiPlainly PROP, BiAffine PROP} P Q :
Jacques-Henri Jourdan
committed
FromAssumption true P Q → KnownLFromAssumption false (■ P) Q.
Jacques-Henri Jourdan
committed
rewrite /KnownLFromAssumption /FromAssumption /= =><-.
by rewrite affine_affinely plainly_elim_persistently.
Qed.
Global Instance from_pure_internal_eq af {A : ofeT} (a b : A) :
@FromPure PROP af (a ≡ b) (a ≡ b).
Proof. by rewrite /FromPure pure_internal_eq affinely_if_elim. Qed.
Global Instance from_pure_later a P φ : FromPure a P φ → FromPure a (▷ P) φ.
Proof. rewrite /FromPure=> ->. apply later_intro. Qed.
Global Instance from_pure_laterN a n P φ : FromPure a P φ → FromPure a (▷^n P) φ.
Proof. rewrite /FromPure=> ->. apply laterN_intro. Qed.
Global Instance from_pure_except_0 a P φ : FromPure a P φ → FromPure a (◇ P) φ.
Proof. rewrite /FromPure=> ->. apply except_0_intro. Qed.
Global Instance from_pure_bupd `{BiBUpd PROP} a P φ :
FromPure a P φ → FromPure a (|==> P) φ.
Proof. rewrite /FromPure=> <-. apply bupd_intro. Qed.
Global Instance from_pure_fupd `{BiFUpd PROP} a E P φ :
FromPure a P φ → FromPure a (|={E}=> P) φ.
Proof. rewrite /FromPure. intros <-. apply fupd_intro. Qed.
Global Instance from_pure_plainly `{BiPlainly PROP} P φ :
FromPure false P φ → FromPure false (■ P) φ.
Proof. rewrite /FromPure=> <-. by rewrite plainly_pure. Qed.
(* IntoPure *)
Global Instance into_pure_eq {A : ofeT} (a b : A) :
Discrete a → @IntoPure PROP (a ≡ b) (a ≡ b).
Proof. intros. by rewrite /IntoPure discrete_eq. Qed.
Global Instance into_pure_plainly `{BiPlainly PROP} P φ :
IntoPure P φ → IntoPure (■ P) φ.
Proof. rewrite /IntoPure=> ->. apply: plainly_elim. Qed.
(* IntoWand *)
Global Instance into_wand_later p q R P Q :
IntoWand p q R P Q → IntoWand p q (▷ R) (▷ P) (▷ Q).
Proof.
rewrite /IntoWand /= => HR.
by rewrite !later_affinely_persistently_if_2 -later_wand HR.
Qed.
Global Instance into_wand_later_args p q R P Q :
IntoWand p q R P Q → IntoWand' p q R (▷ P) (▷ Q).
Proof.
rewrite /IntoWand' /IntoWand /= => HR.
by rewrite !later_affinely_persistently_if_2
(later_intro (□?p R)%I) -later_wand HR.
Qed.
Global Instance into_wand_laterN n p q R P Q :
IntoWand p q R P Q → IntoWand p q (▷^n R) (▷^n P) (▷^n Q).
Proof.
rewrite /IntoWand /= => HR.
by rewrite !laterN_affinely_persistently_if_2 -laterN_wand HR.
Qed.
Global Instance into_wand_laterN_args n p q R P Q :
IntoWand p q R P Q → IntoWand' p q R (▷^n P) (▷^n Q).
Proof.
rewrite /IntoWand' /IntoWand /= => HR.
by rewrite !laterN_affinely_persistently_if_2
(laterN_intro _ (□?p R)%I) -laterN_wand HR.
Global Instance into_wand_bupd `{BiBUpd PROP} p q R P Q :
IntoWand false false R P Q → IntoWand p q (|==> R) (|==> P) (|==> Q).
Proof.
rewrite /IntoWand /= => HR. rewrite !affinely_persistently_if_elim HR.
apply wand_intro_l. by rewrite bupd_sep wand_elim_r.
Qed.
Global Instance into_wand_bupd_persistent `{BiBUpd PROP} p q R P Q :
IntoWand false q R P Q → IntoWand p q (|==> R) P (|==> Q).
Proof.
rewrite /IntoWand /= => HR. rewrite affinely_persistently_if_elim HR.
apply wand_intro_l. by rewrite bupd_frame_l wand_elim_r.
Qed.
Global Instance into_wand_bupd_args `{BiBUpd PROP} p q R P Q :
IntoWand p false R P Q → IntoWand' p q R (|==> P) (|==> Q).
Proof.
rewrite /IntoWand' /IntoWand /= => ->.
apply wand_intro_l. by rewrite affinely_persistently_if_elim bupd_wand_r.
Qed.
Global Instance into_wand_fupd `{BiFUpd PROP} E p q R P Q :
IntoWand false false R P Q →
IntoWand p q (|={E}=> R) (|={E}=> P) (|={E}=> Q).
Proof.
rewrite /IntoWand /= => HR. rewrite !affinely_persistently_if_elim HR.
apply wand_intro_l. by rewrite fupd_sep wand_elim_r.
Qed.
Global Instance into_wand_fupd_persistent `{BiFUpd PROP} E1 E2 p q R P Q :
IntoWand false q R P Q → IntoWand p q (|={E1,E2}=> R) P (|={E1,E2}=> Q).
Proof.
rewrite /IntoWand /= => HR. rewrite affinely_persistently_if_elim HR.
apply wand_intro_l. by rewrite fupd_frame_l wand_elim_r.
Qed.
Global Instance into_wand_fupd_args `{BiFUpd PROP} E1 E2 p q R P Q :
IntoWand p false R P Q → IntoWand' p q R (|={E1,E2}=> P) (|={E1,E2}=> Q).
Proof.
rewrite /IntoWand' /IntoWand /= => ->.
apply wand_intro_l. by rewrite affinely_persistently_if_elim fupd_wand_r.
Qed.
Global Instance into_wand_plainly_true `{BiPlainly PROP} q R P Q :
IntoWand true q R P Q → IntoWand true q (■ R) P Q.
Proof. by rewrite /IntoWand /= persistently_plainly plainly_elim_persistently. Qed.
Global Instance into_wand_plainly_false `{BiPlainly PROP} q R P Q :
Absorbing R → IntoWand false q R P Q → IntoWand false q (■ R) P Q.
Proof. intros ?. by rewrite /IntoWand plainly_elim. Qed.
(* FromAnd *)
Global Instance from_and_later P Q1 Q2 :
FromAnd P Q1 Q2 → FromAnd (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed.
Global Instance from_and_laterN n P Q1 Q2 :
FromAnd P Q1 Q2 → FromAnd (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /FromAnd=> <-. by rewrite laterN_and. Qed.
Global Instance from_and_except_0 P Q1 Q2 :
FromAnd P Q1 Q2 → FromAnd (◇ P) (◇ Q1) (◇ Q2).
Proof. rewrite /FromAnd=><-. by rewrite except_0_and. Qed.
Global Instance from_and_plainly `{BiPlainly PROP} P Q1 Q2 :
FromAnd P Q1 Q2 → FromAnd (■ P) (■ Q1) (■ Q2).
Proof. rewrite /FromAnd=> <-. by rewrite plainly_and. Qed.
(* FromSep *)
Global Instance from_sep_later P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /FromSep=> <-. by rewrite later_sep. Qed.
Global Instance from_sep_laterN n P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /FromSep=> <-. by rewrite laterN_sep. Qed.
Global Instance from_sep_except_0 P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (◇ P) (◇ Q1) (◇ Q2).
Proof. rewrite /FromSep=><-. by rewrite except_0_sep. Qed.
Global Instance from_sep_bupd `{BiBUpd PROP} P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (|==> P) (|==> Q1) (|==> Q2).
Proof. rewrite /FromSep=><-. apply bupd_sep. Qed.
Global Instance from_sep_fupd `{BiFUpd PROP} E P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (|={E}=> P) (|={E}=> Q1) (|={E}=> Q2).
Proof. rewrite /FromSep =><-. apply fupd_sep. Qed.
Global Instance from_sep_plainly `{BiPlainly PROP} P Q1 Q2 :
FromSep P Q1 Q2 → FromSep (■ P) (■ Q1) (■ Q2).
Proof. rewrite /FromSep=> <-. by rewrite plainly_sep_2. Qed.
(* IntoAnd *)
Global Instance into_and_later p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (▷ P) (▷ Q1) (▷ Q2).
Proof.
rewrite /IntoAnd=> HP. apply affinely_persistently_if_intro'.
by rewrite later_affinely_persistently_if_2 HP
affinely_persistently_if_elim later_and.
Qed.
Global Instance into_and_laterN n p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (▷^n P) (▷^n Q1) (▷^n Q2).
Proof.
rewrite /IntoAnd=> HP. apply affinely_persistently_if_intro'.
by rewrite laterN_affinely_persistently_if_2 HP
affinely_persistently_if_elim laterN_and.
Qed.
Global Instance into_and_except_0 p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (◇ P) (◇ Q1) (◇ Q2).
Proof.
rewrite /IntoAnd=> HP. apply affinely_persistently_if_intro'.
by rewrite except_0_affinely_persistently_if_2 HP
affinely_persistently_if_elim except_0_and.
Global Instance into_and_plainly `{BiPlainly PROP} p P Q1 Q2 :
IntoAnd p P Q1 Q2 → IntoAnd p (■ P) (■ Q1) (■ Q2).
Proof.
rewrite /IntoAnd /=. destruct p; simpl.
- rewrite -plainly_and persistently_plainly -plainly_persistently
-plainly_affinely => ->.
by rewrite plainly_affinely plainly_persistently persistently_plainly.
- intros ->. by rewrite plainly_and.
Qed.
Global Instance into_sep_later P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /IntoSep=> ->. by rewrite later_sep. Qed.
Global Instance into_sep_laterN n P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /IntoSep=> ->. by rewrite laterN_sep. Qed.
Global Instance into_sep_except_0 P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (◇ P) (◇ Q1) (◇ Q2).
Proof. rewrite /IntoSep=> ->. by rewrite except_0_sep. Qed.
(* FIXME: This instance is overly specific, generalize it. *)
Global Instance into_sep_affinely_later `{!Timeless (emp%I : PROP)} P Q1 Q2 :
IntoSep P Q1 Q2 → Affine Q1 → Affine Q2 →
IntoSep (<affine> ▷ P) (<affine> ▷ Q1) (<affine> ▷ Q2).
rewrite /IntoSep /= => -> ??.
rewrite -{1}(affine_affinely Q1) -{1}(affine_affinely Q2) later_sep !later_affinely_1.
rewrite -except_0_sep /sbi_except_0 affinely_or. apply or_elim, affinely_elim.
rewrite -(idemp bi_and (<affine> ▷ False)%I) persistent_and_sep_1.
by rewrite -(False_elim Q1) -(False_elim Q2).
Qed.
Global Instance into_sep_plainly `{BiPlainly PROP, BiPositive PROP} P Q1 Q2 :
IntoSep P Q1 Q2 → IntoSep (■ P) (■ Q1) (■ Q2).
Proof. rewrite /IntoSep /= => ->. by rewrite plainly_sep. Qed.
Global Instance into_sep_plainly_affine `{BiPlainly PROP} P Q1 Q2 :
IntoSep P Q1 Q2 →
TCOr (Affine Q1) (Absorbing Q2) → TCOr (Absorbing Q1) (Affine Q2) →
IntoSep (■ P) (■ Q1) (■ Q2).
Proof.
rewrite /IntoSep /= => -> ??. by rewrite sep_and plainly_and plainly_and_sep_l_1.
Qed.
(* FromOr *)
Global Instance from_or_later P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /FromOr=><-. by rewrite later_or. Qed.
Global Instance from_or_laterN n P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /FromOr=><-. by rewrite laterN_or. Qed.
Global Instance from_or_except_0 P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (◇ P) (◇ Q1) (◇ Q2).
Proof. rewrite /FromOr=><-. by rewrite except_0_or. Qed.
Global Instance from_or_bupd `{BiBUpd PROP} P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (|==> P) (|==> Q1) (|==> Q2).
Proof.
rewrite /FromOr=><-.
apply or_elim; apply bupd_mono; auto using or_intro_l, or_intro_r.
Qed.
Global Instance from_or_fupd `{BiFUpd PROP} E1 E2 P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (|={E1,E2}=> P) (|={E1,E2}=> Q1) (|={E1,E2}=> Q2).
Proof.
rewrite /FromOr=><-. apply or_elim; apply fupd_mono;
[apply bi.or_intro_l|apply bi.or_intro_r].
Qed.
Global Instance from_or_plainly `{BiPlainly PROP} P Q1 Q2 :
FromOr P Q1 Q2 → FromOr (■ P) (■ Q1) (■ Q2).
Proof. rewrite /FromOr=> <-. by rewrite -plainly_or_2. Qed.
(* IntoOr *)
Global Instance into_or_later P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (▷ P) (▷ Q1) (▷ Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.
Global Instance into_or_laterN n P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (▷^n P) (▷^n Q1) (▷^n Q2).
Proof. rewrite /IntoOr=>->. by rewrite laterN_or. Qed.
Global Instance into_or_except_0 P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (◇ P) (◇ Q1) (◇ Q2).
Proof. rewrite /IntoOr=>->. by rewrite except_0_or. Qed.
Global Instance into_or_plainly `{BiPlainly PROP, BiPlainlyExist PROP} P Q1 Q2 :
IntoOr P Q1 Q2 → IntoOr (■ P) (■ Q1) (■ Q2).
Proof. rewrite /IntoOr=>->. by rewrite plainly_or. Qed.
(* FromExist *)
Global Instance from_exist_later {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (▷ P) (λ a, ▷ (Φ a))%I.
Proof.
rewrite /FromExist=> <-. apply exist_elim=>x. apply later_mono, exist_intro.
Qed.
Global Instance from_exist_laterN {A} n P (Φ : A → PROP) :
FromExist P Φ → FromExist (▷^n P) (λ a, ▷^n (Φ a))%I.
Proof.
rewrite /FromExist=> <-. apply exist_elim=>x. apply laterN_mono, exist_intro.
Qed.
Global Instance from_exist_except_0 {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (◇ P) (λ a, ◇ (Φ a))%I.
Proof. rewrite /FromExist=> <-. by rewrite except_0_exist_2. Qed.
Global Instance from_exist_bupd `{BiBUpd PROP} {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (|==> P) (λ a, |==> Φ a)%I.
Proof.
rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
Global Instance from_exist_fupd `{BiFUpd PROP} {A} E1 E2 P (Φ : A → PROP) :
FromExist P Φ → FromExist (|={E1,E2}=> P) (λ a, |={E1,E2}=> Φ a)%I.
Proof.
rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
Global Instance from_exist_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) :
FromExist P Φ → FromExist (■ P) (λ a, ■ (Φ a))%I.
Proof. rewrite /FromExist=> <-. by rewrite -plainly_exist_2. Qed.
(* IntoExist *)
Global Instance into_exist_later {A} P (Φ : A → PROP) :
IntoExist P Φ → Inhabited A → IntoExist (▷ P) (λ a, ▷ (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_laterN {A} n P (Φ : A → PROP) :
IntoExist P Φ → Inhabited A → IntoExist (▷^n P) (λ a, ▷^n (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP laterN_exist. Qed.
Global Instance into_exist_except_0 {A} P (Φ : A → PROP) :
IntoExist P Φ → Inhabited A → IntoExist (◇ P) (λ a, ◇ (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP except_0_exist. Qed.
Global Instance into_exist_plainly `{BiPlainlyExist PROP} {A} P (Φ : A → PROP) :
IntoExist P Φ → IntoExist (■ P) (λ a, ■ (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP plainly_exist. Qed.
Global Instance into_forall_later {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (▷ P) (λ a, ▷ (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP later_forall. Qed.
Global Instance into_forall_except_0 {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (◇ P) (λ a, ◇ (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP except_0_forall. Qed.
FromPureT false P φ → IntoForall (P → Q) (λ _ : φ, Q).
Proof.
rewrite /FromPureT /FromPure /IntoForall=> -[φ' [-> <-]].
by rewrite pure_impl_forall.
Qed.
Global Instance into_forall_wand_pure φ P Q :
FromPureT true P φ → IntoForall (P -∗ Q) (λ _ : φ, Q).
rewrite /FromPureT /FromPure /IntoForall=> -[φ' [-> <-]] /=.
apply forall_intro=>? /=.
by rewrite -(pure_intro True%I) // /bi_affinely right_id emp_wand.
Global Instance into_forall_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) :
IntoForall P Φ → IntoForall (■ P) (λ a, ■ (Φ a))%I.
Proof. rewrite /IntoForall=> HP. by rewrite HP plainly_forall. Qed.
(* FromForall *)
Global Instance from_forall_later {A} P (Φ : A → PROP) :
FromForall P Φ → FromForall (▷ P)%I (λ a, ▷ (Φ a))%I.
Proof. rewrite /FromForall=> <-. by rewrite later_forall. Qed.
Global Instance from_forall_except_0 {A} P (Φ : A → PROP) :
FromForall P Φ → FromForall (◇ P)%I (λ a, ◇ (Φ a))%I.
Proof. rewrite /FromForall=> <-. by rewrite except_0_forall. Qed.
Global Instance from_forall_plainly `{BiPlainly PROP} {A} P (Φ : A → PROP) :
FromForall P Φ → FromForall (■ P)%I (λ a, ■ (Φ a))%I.
Proof. rewrite /FromForall=> <-. by rewrite plainly_forall. Qed.
(* IsExcept0 *)
Global Instance is_except_0_except_0 P : IsExcept0 (◇ P).
Proof. by rewrite /IsExcept0 except_0_idemp. Qed.
Global Instance is_except_0_later P : IsExcept0 (▷ P).
Proof. by rewrite /IsExcept0 except_0_later. Qed.
Global Instance is_except_0_embed `{SbiEmbed PROP PROP'} P :
IsExcept0 P → IsExcept0 ⎡P⎤.
Proof. by rewrite /IsExcept0 -embed_except_0=>->. Qed.
Global Instance is_except_0_bupd `{BiBUpd PROP} P : IsExcept0 P → IsExcept0 (|==> P).
Proof.
rewrite /IsExcept0=> HP.
by rewrite -{2}HP -(except_0_idemp P) -except_0_bupd -(except_0_intro P).
Qed.
Global Instance is_except_0_fupd `{BiFUpd PROP} E1 E2 P :
IsExcept0 (|={E1,E2}=> P).
Proof. by rewrite /IsExcept0 except_0_fupd. Qed.
Global Instance from_modal_later P :
FromModal (modality_laterN 1) (▷^1 P) (▷ P) P.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_laterN n P :
FromModal (modality_laterN n) (▷^n P) (▷^n P) P.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_except_0 P : FromModal modality_id (◇ P) (◇ P) P.
Robbert Krebbers
committed
Proof. by rewrite /FromModal /= -except_0_intro. Qed.
Global Instance from_modal_bupd `{BiBUpd PROP} P :
FromModal modality_id (|==> P) (|==> P) P.
Robbert Krebbers
committed
Proof. by rewrite /FromModal /= -bupd_intro. Qed.
Global Instance from_modal_fupd E P `{BiFUpd PROP} :
FromModal modality_id (|={E}=> P) (|={E}=> P) P.
Robbert Krebbers
committed
Proof. by rewrite /FromModal /= -fupd_intro. Qed.
Global Instance from_modal_later_embed `{SbiEmbed PROP PROP'} `(sel : A) n P Q :
FromModal (modality_laterN n) sel P Q →
FromModal (modality_laterN n) sel ⎡P⎤ ⎡Q⎤.
Proof. rewrite /FromModal /= =><-. by rewrite embed_laterN. Qed.
Global Instance from_modal_plainly `{BiPlainly PROP} P :
FromModal modality_plainly (■ P) (■ P) P | 2.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_plainly_embed
`{BiPlainly PROP, BiPlainly PROP', SbiEmbed PROP PROP'} `(sel : A) P Q :
FromModal modality_plainly sel P Q →
FromModal modality_plainly sel ⎡P⎤ ⎡Q⎤ | 100.
Proof. rewrite /FromModal /= =><-. by rewrite embed_plainly. Qed.
(* IntoInternalEq *)
Global Instance into_internal_eq_internal_eq {A : ofeT} (x y : A) :
@IntoInternalEq PROP A (x ≡ y) x y.
Proof. by rewrite /IntoInternalEq. Qed.
Global Instance into_internal_eq_affinely {A : ofeT} (x y : A) P :
IntoInternalEq P x y → IntoInternalEq (<affine> P) x y.
Proof. rewrite /IntoInternalEq=> ->. by rewrite affinely_elim. Qed.
Global Instance into_internal_eq_absorbingly {A : ofeT} (x y : A) P :
IntoInternalEq P x y → IntoInternalEq (<absorb> P) x y.
Proof. rewrite /IntoInternalEq=> ->. by rewrite absorbingly_internal_eq. Qed.
Global Instance into_internal_eq_plainly `{BiPlainly PROP} {A : ofeT} (x y : A) P :
IntoInternalEq P x y → IntoInternalEq (■ P) x y.
Proof. rewrite /IntoInternalEq=> ->. by rewrite plainly_elim. Qed.
Global Instance into_internal_eq_persistently {A : ofeT} (x y : A) P :
IntoInternalEq P x y → IntoInternalEq (<pers> P) x y.
Proof. rewrite /IntoInternalEq=> ->. by rewrite persistently_elim. Qed.
Global Instance into_internal_eq_embed
`{SbiEmbed PROP PROP'} {A : ofeT} (x y : A) P :
IntoInternalEq P x y → IntoInternalEq ⎡P⎤ x y.
Proof. rewrite /IntoInternalEq=> ->. by rewrite embed_internal_eq. Qed.
(* IntoExcept0 *)
Global Instance into_except_0_except_0 P : IntoExcept0 (◇ P) P.
Proof. by rewrite /IntoExcept0. Qed.
Global Instance into_except_0_later P : Timeless P → IntoExcept0 (▷ P) P.
Proof. by rewrite /IntoExcept0. Qed.
Global Instance into_except_0_later_if p P : Timeless P → IntoExcept0 (▷?p P) P.
Proof. rewrite /IntoExcept0. destruct p; auto using except_0_intro. Qed.
Global Instance into_except_0_affinely P Q :
IntoExcept0 P Q → IntoExcept0 (<affine> P) (<affine> Q).
Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_affinely_2. Qed.
Global Instance into_except_0_absorbingly P Q :
IntoExcept0 P Q → IntoExcept0 (<absorb> P) (<absorb> Q).
Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_absorbingly. Qed.
Global Instance into_except_0_plainly `{BiPlainly PROP, BiPlainlyExist PROP} P Q :
IntoExcept0 P Q → IntoExcept0 (■ P) (■ Q).
Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_plainly. Qed.
Global Instance into_except_0_persistently P Q :
IntoExcept0 P Q → IntoExcept0 (<pers> P) (<pers> Q).
Proof. rewrite /IntoExcept0=> ->. by rewrite except_0_persistently. Qed.
Global Instance into_except_0_embed `{SbiEmbed PROP PROP'} P Q :
IntoExcept0 P Q → IntoExcept0 ⎡P⎤ ⎡Q⎤.
Proof. rewrite /IntoExcept0=> ->. by rewrite embed_except_0. Qed.
(* ElimModal *)
Global Instance elim_modal_timeless P Q :
IntoExcept0 P P' → IsExcept0 Q → ElimModal True P P' Q Q.
intros. rewrite /ElimModal (except_0_intro (_ -∗ _)%I).
by rewrite (into_except_0 P) -except_0_sep wand_elim_r.
Jacques-Henri Jourdan
committed
Global Instance elim_modal_bupd_plain_goal `{BiBUpdPlainly PROP} P Q :
Plain Q → ElimModal True (|==> P) P Q Q.
Proof. intros. by rewrite /ElimModal bupd_frame_r wand_elim_r bupd_plain. Qed.
Global Instance elim_modal_bupd_plain `{BiBUpdPlainly PROP} P Q :
Plain P → ElimModal True (|==> P) P Q Q.
Proof. intros. by rewrite /ElimModal bupd_plain wand_elim_r. Qed.
Global Instance elim_modal_bupd_fupd `{BiBUpdFUpd PROP} E1 E2 P Q :
ElimModal True (|==> P) P (|={E1,E2}=> Q) (|={E1,E2}=> Q) | 10.
Proof.
by rewrite /ElimModal (bupd_fupd E1) fupd_frame_r wand_elim_r fupd_trans.
Qed.
Jacques-Henri Jourdan
committed
Global Instance elim_modal_fupd_fupd `{BiFUpd PROP} E1 E2 E3 P Q :
ElimModal True (|={E1,E2}=> P) P (|={E1,E3}=> Q) (|={E2,E3}=> Q).
Proof. by rewrite /ElimModal fupd_frame_r wand_elim_r fupd_trans. Qed.
Jacques-Henri Jourdan
committed
Global Instance elim_modal_embed_fupd_goal `{BiEmbedFUpd PROP PROP'}
φ E1 E2 E3 (P P' : PROP') (Q Q' : PROP) :
ElimModal φ P P' (|={E1,E3}=> ⎡Q⎤)%I (|={E2,E3}=> ⎡Q'⎤)%I →
ElimModal φ P P' ⎡|={E1,E3}=> Q⎤ ⎡|={E2,E3}=> Q'⎤.
Proof. by rewrite /ElimModal !embed_fupd. Qed.
Global Instance elim_modal_embed_fupd_hyp `{BiEmbedFUpd PROP PROP'}
φ E1 E2 (P : PROP) (P' Q Q' : PROP') :
ElimModal φ (|={E1,E2}=> ⎡P⎤)%I P' Q Q' →
ElimModal φ ⎡|={E1,E2}=> P⎤ P' Q Q'.
Proof. by rewrite /ElimModal embed_fupd. Qed.
(* AddModal *)
(* High priority to add a ▷ rather than a ◇ when P is timeless. *)
Global Instance add_modal_later_except_0 P Q :
Timeless P → AddModal (▷ P) P (◇ Q) | 0.
intros. rewrite /AddModal (except_0_intro (_ -∗ _)%I) (timeless P).
by rewrite -except_0_sep wand_elim_r except_0_idemp.
Qed.
Global Instance add_modal_later P Q :
Timeless P → AddModal (▷ P) P (▷ Q) | 0.
Proof.
intros. rewrite /AddModal (except_0_intro (_ -∗ _)%I) (timeless P).
by rewrite -except_0_sep wand_elim_r except_0_later.
Qed.
Global Instance add_modal_except_0 P Q : AddModal (◇ P) P (◇ Q) | 1.
Proof.
intros. rewrite /AddModal (except_0_intro (_ -∗ _)%I).
by rewrite -except_0_sep wand_elim_r except_0_idemp.
Qed.
Global Instance add_modal_except_0_later P Q : AddModal (◇ P) P (▷ Q) | 1.
Proof.
intros. rewrite /AddModal (except_0_intro (_ -∗ _)%I).
by rewrite -except_0_sep wand_elim_r except_0_later.
Global Instance add_modal_bupd `{BiBUpd PROP} P Q : AddModal (|==> P) P (|==> Q).
Proof. by rewrite /AddModal bupd_frame_r wand_elim_r bupd_trans. Qed.
Global Instance add_modal_fupd `{BiFUpd PROP} E1 E2 P Q :
AddModal (|={E1}=> P) P (|={E1,E2}=> Q).
Proof. by rewrite /AddModal fupd_frame_r wand_elim_r fupd_trans. Qed.
Jacques-Henri Jourdan
committed
Global Instance add_modal_embed_fupd_goal `{BiEmbedFUpd PROP PROP'}
E1 E2 (P P' : PROP') (Q : PROP) :
AddModal P P' (|={E1,E2}=> ⎡Q⎤)%I → AddModal P P' ⎡|={E1,E2}=> Q⎤.
Proof. by rewrite /AddModal !embed_fupd. Qed.
Global Instance frame_eq_embed `{SbiEmbed PROP PROP'} p P Q (Q' : PROP')
Frame p (a ≡ b) P Q → MakeEmbed Q Q' → Frame p (a ≡ b) ⎡P⎤ Q'.
Proof. rewrite /Frame /MakeEmbed -embed_internal_eq. apply (frame_embed p P Q). Qed.
Jacques-Henri Jourdan
committed
Global Instance make_laterN_true n : @KnownMakeLaterN PROP n True True | 0.
Proof. by rewrite /KnownMakeLaterN /MakeLaterN laterN_True. Qed.
Global Instance make_laterN_0 P : MakeLaterN 0 P P | 0.
Proof. by rewrite /MakeLaterN. Qed.
Global Instance make_laterN_1 P : MakeLaterN 1 P (▷ P) | 2.
Proof. by rewrite /MakeLaterN. Qed.
Global Instance make_laterN_default P : MakeLaterN n P (▷^n P) | 100.
Proof. by rewrite /MakeLaterN. Qed.
NoBackTrack (MaybeIntoLaterN true 1 R' R) →
Frame p R P Q → MakeLaterN 1 Q Q' → Frame p R' (▷ P) Q'.
Proof.
rewrite /Frame /MakeLaterN /MaybeIntoLaterN=>-[->] <- <-.
by rewrite later_affinely_persistently_if_2 later_sep.
Qed.
Global Instance frame_laterN p n R R' P Q Q' :
NoBackTrack (MaybeIntoLaterN true n R' R) →
Frame p R P Q → MakeLaterN n Q Q' → Frame p R' (▷^n P) Q'.
rewrite /Frame /MakeLaterN /MaybeIntoLaterN=>-[->] <- <-.
by rewrite laterN_affinely_persistently_if_2 laterN_sep.
Qed.
Global Instance frame_bupd `{BiBUpd PROP} p R P Q :
Frame p R P Q → Frame p R (|==> P) (|==> Q).
Proof. rewrite /Frame=><-. by rewrite bupd_frame_l. Qed.
Global Instance frame_fupd `{BiFUpd PROP} p E1 E2 R P Q :
Frame p R P Q → Frame p R (|={E1,E2}=> P) (|={E1,E2}=> Q).
Proof. rewrite /Frame=><-. by rewrite fupd_frame_l. Qed.
Jacques-Henri Jourdan
committed
Global Instance make_except_0_True : @KnownMakeExcept0 PROP True True.
Proof. by rewrite /KnownMakeExcept0 /MakeExcept0 except_0_True. Qed.
Global Instance make_except_0_default P : MakeExcept0 P (◇ P) | 100.
Proof. by rewrite /MakeExcept0. Qed.
Global Instance frame_except_0 p R P Q Q' :
Frame p R P Q → MakeExcept0 Q Q' → Frame p R (◇ P) Q'.
rewrite /Frame /MakeExcept0=><- <-.
by rewrite except_0_sep -(except_0_intro (□?p R)%I).
Global Instance into_laterN_0 only_head P : IntoLaterN only_head 0 P P.
Proof. by rewrite /IntoLaterN /MaybeIntoLaterN. Qed.
Global Instance into_laterN_later only_head n n' m' P Q lQ :
NatCancel n 1 n' m' →
(** If canceling has failed (i.e. [1 = m']), we should make progress deeper
into [P], as such, we continue with the [IntoLaterN] class, which is required
to make progress. If canceling has succeeded, we do not need to make further
progress, but there may still be a left-over (i.e. [n']) to cancel more deeply
into [P], as such, we continue with [MaybeIntoLaterN]. *)
TCIf (TCEq 1 m') (IntoLaterN only_head n' P Q) (MaybeIntoLaterN only_head n' P Q) →
IntoLaterN only_head n (▷ P) lQ | 2.
Proof.
rewrite /MakeLaterN /IntoLaterN /MaybeIntoLaterN /NatCancel.
move=> Hn [_ ->|->] <-;
by rewrite -later_laterN -laterN_plus -Hn Nat.add_comm.
Qed.
Global Instance into_laterN_laterN only_head n m n' m' P Q lQ :
TCIf (TCEq m m') (IntoLaterN only_head n' P Q) (MaybeIntoLaterN only_head n' P Q) →
IntoLaterN only_head n (▷^m P) lQ | 1.
rewrite /MakeLaterN /IntoLaterN /MaybeIntoLaterN /NatCancel.
move=> Hn [_ ->|->] <-; by rewrite -!laterN_plus -Hn Nat.add_comm.
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
IntoLaterN false n P1 Q1 → MaybeIntoLaterN false n P2 Q2 →
IntoLaterN false n (P1 ∧ P2) (Q1 ∧ Q2) | 10.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> -> ->. by rewrite laterN_and. Qed.
IntoLaterN false n P2 Q2 → IntoLaterN false n (P ∧ P2) (P ∧ Q2) | 11.
rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Global Instance into_laterN_forall {A} n (Φ Ψ : A → PROP) :
(∀ x, IntoLaterN false n (Φ x) (Ψ x)) →
IntoLaterN false n (∀ x, Φ x) (∀ x, Ψ x).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN laterN_forall=> ?. by apply forall_mono. Qed.
Global Instance into_laterN_exist {A} n (Φ Ψ : A → PROP) :
(∀ x, IntoLaterN false n (Φ x) (Ψ x)) →
IntoLaterN false n (∃ x, Φ x) (∃ x, Ψ x).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN -laterN_exist_2=> ?. by apply exist_mono. Qed.
Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
IntoLaterN false n P1 Q1 → MaybeIntoLaterN false n P2 Q2 →
IntoLaterN false n (P1 ∨ P2) (Q1 ∨ Q2) | 10.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> -> ->. by rewrite laterN_or. Qed.
IntoLaterN false n P2 Q2 →
IntoLaterN false n (P ∨ P2) (P ∨ Q2) | 11.
rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
Global Instance into_later_affinely n P Q :
IntoLaterN false n P Q → IntoLaterN false n (<affine> P) (<affine> Q).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_affinely_2. Qed.
Global Instance into_later_absorbingly n P Q :
IntoLaterN false n P Q → IntoLaterN false n (<absorb> P) (<absorb> Q).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_absorbingly. Qed.
Global Instance into_later_plainly `{BiPlainly PROP} n P Q :
IntoLaterN false n P Q → IntoLaterN false n (■ P) (■ Q).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_plainly. Qed.
Global Instance into_later_persistently n P Q :
IntoLaterN false n P Q → IntoLaterN false n (<pers> P) (<pers> Q).
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_persistently. Qed.
Global Instance into_later_embed`{SbiEmbed PROP PROP'} n P Q :
IntoLaterN false n P Q → IntoLaterN false n ⎡P⎤ ⎡Q⎤.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite embed_laterN. Qed.
Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
IntoLaterN false n P1 Q1 → MaybeIntoLaterN false n P2 Q2 →
IntoLaterN false n (P1 ∗ P2) (Q1 ∗ Q2) | 10.
Proof. rewrite /IntoLaterN /MaybeIntoLaterN=> -> ->. by rewrite laterN_sep. Qed.
IntoLaterN false n P2 Q2 →
IntoLaterN false n (P ∗ P2) (P ∗ Q2) | 11.
rewrite /IntoLaterN /MaybeIntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
Qed.
Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat → A → PROP) (l: list A) :
(∀ x k, IntoLaterN false n (Φ k x) (Ψ k x)) →
IntoLaterN false n ([∗ list] k ↦ x ∈ l, Φ k x) ([∗ list] k ↦ x ∈ l, Ψ k x).
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opL_commute. by apply big_sepL_mono.
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
(Φ Ψ : K → A → PROP) (m : gmap K A) :
(∀ x k, IntoLaterN false n (Φ k x) (Ψ k x)) →
IntoLaterN false n ([∗ map] k ↦ x ∈ m, Φ k x) ([∗ map] k ↦ x ∈ m, Ψ k x).
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opM_commute. by apply big_sepM_mono.
Qed.
Global Instance into_laterN_big_sepS n `{Countable A}
(Φ Ψ : A → PROP) (X : gset A) :
(∀ x, IntoLaterN false n (Φ x) (Ψ x)) →
IntoLaterN false n ([∗ set] x ∈ X, Φ x) ([∗ set] x ∈ X, Ψ x).
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opS_commute. by apply big_sepS_mono.
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
(Φ Ψ : A → PROP) (X : gmultiset A) :
(∀ x, IntoLaterN false n (Φ x) (Ψ x)) →
IntoLaterN false n ([∗ mset] x ∈ X, Φ x) ([∗ mset] x ∈ X, Ψ x).
rewrite /IntoLaterN /MaybeIntoLaterN=> ?.
rewrite big_opMS_commute. by apply big_sepMS_mono.