Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PROSA - Formally Proven Schedulability Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RT-PROOFS
PROSA - Formally Proven Schedulability Analysis
Commits
070d8190
Commit
070d8190
authored
5 years ago
by
Sergey Bozhko
Browse files
Options
Downloads
Patches
Plain Diff
Add lemmas about workload bound
parent
a1acfadd
No related branches found
No related tags found
1 merge request
!44
Port seq aRTA
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
restructuring/analysis/arrival/rbf.v
+95
-0
95 additions, 0 deletions
restructuring/analysis/arrival/rbf.v
restructuring/analysis/arrival/workload_bound.v
+294
-0
294 additions, 0 deletions
restructuring/analysis/arrival/workload_bound.v
with
389 additions
and
0 deletions
restructuring/analysis/arrival/rbf.v
0 → 100644
+
95
−
0
View file @
070d8190
From
rt
.
util
Require
Import
all
.
From
rt
.
restructuring
.
behavior
Require
Import
schedule
.
From
rt
.
restructuring
.
model
Require
Import
job
task
.
From
rt
.
restructuring
.
model
.
arrival
Require
Import
task_arrivals
arrival_curves
.
From
rt
.
restructuring
.
analysis
Require
Import
arrival
.
workload_bound
.
From
mathcomp
Require
Import
ssreflect
ssrbool
eqtype
ssrnat
seq
path
fintype
bigop
.
(** * Request Bound Functions (RBF) *)
(** In this section, we prove some properties of Request Bound Functions (RBF). *)
Section
RequestBoundFunctions
.
(* Consider any type of tasks ... *)
Context
{
Task
:
TaskType
}
.
Context
`{
TaskCost
Task
}
.
(* ... and any type of jobs associated with these tasks. *)
Context
{
Job
:
JobType
}
.
Context
`{
JobTask
Job
Task
}
.
Context
`{
JobArrival
Job
}
.
(* Consider any arrival sequence. *)
Variable
arr_seq
:
arrival_sequence
Job
.
Hypothesis
H_arrival_times_are_consistent
:
consistent_arrival_times
arr_seq
.
(* Let tsk be any task. *)
Variable
tsk
:
Task
.
(* Let max_arrivals be a family of valid arrival curves, i.e., for any task tsk in ts
[max_arrival tsk] is (1) an arrival bound of tsk, and (2) it is a monotonic function
that equals 0 for the empty interval delta = 0. *)
Context
`{
MaxArrivals
Task
}
.
Hypothesis
H_valid_arrival_curve
:
valid_arrival_curve
tsk
(
max_arrivals
tsk
)
.
Hypothesis
H_is_arrival_curve
:
respects_max_arrivals
arr_seq
tsk
(
max_arrivals
tsk
)
.
(* Let's define some local names for clarity. *)
Let
task_rbf
:=
task_request_bound_function
tsk
.
(* We prove that [task_rbf 0] is equal to 0. *)
Lemma
task_rbf_0_zero
:
task_rbf
0
=
0
.
Proof
.
rewrite
/
task_rbf
/
task_request_bound_function
.
apply
/
eqP
;
rewrite
muln_eq0
;
apply
/
orP
;
right
;
apply
/
eqP
.
by
move
:
H_valid_arrival_curve
=>
[
T1
T2
]
.
Qed
.
(* We prove that task_rbf is monotone. *)
Lemma
task_rbf_monotone
:
monotone
task_rbf
leq
.
Proof
.
rewrite
/
monotone
;
intros
?
?
LE
.
rewrite
/
task_rbf
/
task_request_bound_function
leq_mul2l
.
apply
/
orP
;
right
.
by
move
:
H_valid_arrival_curve
=>
[_
T
];
apply
T
.
Qed
.
(* Consider any job j of tsk. This guarantees that
there exists at least one job of task tsk. *)
Variable
j
:
Job
.
Hypothesis
H_j_arrives
:
arrives_in
arr_seq
j
.
Hypothesis
H_job_of_tsk
:
job_task
j
=
tsk
.
(* Then we prove that task_rbf 1 is greater than or equal to task cost. *)
Lemma
task_rbf_1_ge_task_cost
:
task_rbf
1
>=
task_cost
tsk
.
Proof
.
have
ALT
:
forall
n
,
n
=
0
\/
n
>
0
.
{
by
clear
;
intros
n
;
destruct
n
;
[
left
|
right
]
.
}
specialize
(
ALT
(
task_cost
tsk
));
destruct
ALT
as
[
Z
|
POS
];
first
by
rewrite
Z
.
rewrite
leqNgt
;
apply
/
negP
;
intros
CONTR
.
move
:
H_is_arrival_curve
=>
ARRB
.
specialize
(
ARRB
(
job_arrival
j
)
(
job_arrival
j
+
1
))
.
feed
ARRB
;
first
by
rewrite
leq_addr
.
rewrite
addKn
in
ARRB
.
move
:
CONTR
;
rewrite
/
task_rbf
/
task_request_bound_function
;
move
=>
CONTR
.
move
:
CONTR
;
rewrite
-
{
2
}[
task_cost
tsk
]
muln1
ltn_mul2l
;
move
=>
/
andP
[_
CONTR
]
.
move
:
CONTR
;
rewrite
-
addn1
-
{
3
}[
1
]
add0n
leq_add2r
leqn0
;
move
=>
/
eqP
CONTR
.
move
:
ARRB
;
rewrite
CONTR
leqn0
eqn0Ngt
;
move
=>
/
negP
T
;
apply
:
T
.
rewrite
/
number_of_task_arrivals
-
has_predT
.
rewrite
/
task_arrivals_between
.
apply
/
hasP
;
exists
j
;
last
by
done
.
rewrite
/
arrivals_between
addn1
big_nat_recl
;
last
by
done
.
rewrite
big_geq
?cats0
;
last
by
done
.
rewrite
mem_filter
.
apply
/
andP
;
split
.
-
by
apply
/
eqP
.
-
move
:
H_j_arrives
=>
[
t
ARR
]
.
move
:
(
ARR
)
=>
CONS
.
apply
H_arrival_times_are_consistent
in
CONS
.
by
rewrite
CONS
.
Qed
.
End
RequestBoundFunctions
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
restructuring/analysis/arrival/workload_bound.v
0 → 100644
+
294
−
0
View file @
070d8190
From
rt
.
util
Require
Import
sum
.
From
rt
.
restructuring
.
behavior
Require
Import
schedule
.
From
rt
.
restructuring
.
model
Require
Import
task
schedule
.
priority_based
.
priorities
arrival
.
arrival_curves
.
From
rt
.
restructuring
.
model
.
arrival
Require
Import
task_arrivals
arrival_curves
.
From
rt
.
restructuring
.
analysis
Require
Import
workload
ideal_schedule
basic_facts
.
arrivals
.
From
mathcomp
Require
Import
ssreflect
ssrbool
eqtype
ssrnat
seq
path
fintype
bigop
.
(** * Task Workload Bounded by Arrival Curves *)
Section
TaskWorkloadBoundedByArrivalCurves
.
(* Consider any type of tasks ... *)
Context
{
Task
:
TaskType
}
.
Context
`{
TaskCost
Task
}
.
(* ... and any type of jobs associated with these tasks. *)
Context
{
Job
:
JobType
}
.
Context
`{
JobTask
Job
Task
}
.
Context
`{
JobArrival
Job
}
.
Context
`{
JobCost
Job
}
.
(* Consider any arrival sequence with consistent, non-duplicate arrivals... *)
Variable
arr_seq
:
arrival_sequence
Job
.
Hypothesis
H_arrival_times_are_consistent
:
consistent_arrival_times
arr_seq
.
Hypothesis
H_arr_seq_is_a_set
:
arrival_sequence_uniq
arr_seq
.
(* ... and any ideal uniprocessor schedule of this arrival sequence.*)
Variable
sched
:
schedule
(
ideal
.
processor_state
Job
)
.
Hypothesis
H_jobs_come_from_arrival_sequence
:
jobs_come_from_arrival_sequence
sched
arr_seq
.
(* Consider an FP policy that indicates a higher-or-equal priority relation. *)
Variable
higher_eq_priority
:
FP_policy
Task
.
Let
jlfp_higher_eq_priority
:=
FP_to_JLFP
Job
Task
.
(* For simplicity, let's define some local names. *)
Let
arrivals_between
:=
arrivals_between
arr_seq
.
(* We define the notion of request bound function. *)
Section
RequestBoundFunction
.
(* Let MaxArrivals denote any function that takes a task and an interval length
and returns the associated number of job arrivals of the task. *)
Context
`{
MaxArrivals
Task
}
.
(* In this section, we define a bound for the workload of a single task
under uniprocessor FP scheduling. *)
Section
SingleTask
.
(* Consider any task tsk that is to be scheduled in an interval of length delta. *)
Variable
tsk
:
Task
.
Variable
delta
:
duration
.
(* We define the following workload bound for the task. *)
Definition
task_request_bound_function
:=
task_cost
tsk
*
max_arrivals
tsk
delta
.
End
SingleTask
.
(* In this section, we define a bound for the workload of multiple tasks. *)
Section
AllTasks
.
(* Consider a task set ts... *)
Variable
ts
:
list
Task
.
(* ...and let tsk be any task in task set. *)
Variable
tsk
:
Task
.
(* Let delta be the length of the interval of interest. *)
Variable
delta
:
duration
.
(* Recall the definition of higher-or-equal-priority task and
the per-task workload bound for FP scheduling. *)
Let
is_hep_task
tsk_other
:=
higher_eq_priority
tsk_other
tsk
.
Let
is_other_hep_task
tsk_other
:=
higher_eq_priority
tsk_other
tsk
&&
(
tsk_other
!=
tsk
)
.
(* Using the sum of individual workload bounds, we define the following bound
for the total workload of tasks in any interval of length delta. *)
Definition
total_request_bound_function
:=
\
sum_
(
tsk
<-
ts
)
task_request_bound_function
tsk
delta
.
(* Similarly, we define the following bound for the total workload of tasks of
higher-or-equal priority (with respect to tsk) in any interval of length delta. *)
Definition
total_hep_request_bound_function_FP
:=
\
sum_
(
tsk_other
<-
ts
|
is_hep_task
tsk_other
)
task_request_bound_function
tsk_other
delta
.
(* We also define a bound for the total workload of higher-or-equal
priority tasks other than tsk in any interval of length delta. *)
Definition
total_ohep_request_bound_function_FP
:=
\
sum_
(
tsk_other
<-
ts
|
is_other_hep_task
tsk_other
)
task_request_bound_function
tsk_other
delta
.
End
AllTasks
.
End
RequestBoundFunction
.
(* In this section we prove some lemmas about request bound functions. *)
Section
ProofWorkloadBound
.
(* Consider a task set ts... *)
Variable
ts
:
list
Task
.
(* ...and let tsk be any task in ts. *)
Variable
tsk
:
Task
.
Hypothesis
H_tsk_in_ts
:
tsk
\
in
ts
.
(* Assume that the job costs are no larger than the task costs. *)
Hypothesis
H_job_cost_le_task_cost
:
cost_of_jobs_from_arrival_sequence_le_task_cost
arr_seq
.
(* Next, we assume that all jobs come from the task set. *)
Hypothesis
H_all_jobs_from_taskset
:
all_jobs_from_taskset
arr_seq
ts
.
(* Let max_arrivals be any arrival bound for taskset ts. *)
Context
`{
MaxArrivals
Task
}
.
Hypothesis
H_is_arrival_bound
:
taskset_respects_max_arrivals
arr_seq
ts
.
(* Let's define some local names for clarity. *)
Let
task_rbf
:=
task_request_bound_function
tsk
.
Let
total_rbf
:=
total_request_bound_function
ts
.
Let
total_hep_rbf
:=
total_hep_request_bound_function_FP
ts
tsk
.
Let
total_ohep_rbf
:=
total_ohep_request_bound_function_FP
ts
tsk
.
(* Next, we consider any job j of tsk. *)
Variable
j
:
Job
.
Hypothesis
H_j_arrives
:
arrives_in
arr_seq
j
.
Hypothesis
H_job_of_tsk
:
job_task
j
=
tsk
.
(* Next, we say that two jobs j1 and j2 are in relation other_higher_eq_priority, iff
j1 has higher or equal priority than j2 and is produced by a different task. *)
Let
other_higher_eq_priority
j1
j2
:=
jlfp_higher_eq_priority
j1
j2
&&
(
~~
same_task
j1
j2
)
.
(* Next, we recall the notions of total workload of jobs... *)
Let
total_workload
t1
t2
:=
workload_of_jobs
predT
(
arrivals_between
t1
t2
)
.
(* ...notions of workload of higher or equal priority jobs... *)
Let
total_hep_workload
t1
t2
:=
workload_of_jobs
(
fun
j_other
=>
jlfp_higher_eq_priority
j_other
j
)
(
arrivals_between
t1
t2
)
.
(* ... workload of other higher or equal priority jobs... *)
Let
total_ohep_workload
t1
t2
:=
workload_of_jobs
(
fun
j_other
=>
other_higher_eq_priority
j_other
j
)
(
arrivals_between
t1
t2
)
.
(* ... and the workload of jobs of the same task as job j. *)
Let
task_workload
t1
t2
:=
workload_of_jobs
(
job_of_task
tsk
)
(
arrivals_between
t1
t2
)
.
(* In this section we prove that the workload of any jobs is
no larger than the request bound function. *)
Section
WorkloadIsBoundedByRBF
.
(* Consider any time t and any interval of length delta. *)
Variable
t
:
instant
.
Variable
delta
:
instant
.
(* First, we show that workload of task tsk is bounded by
the number of arrivals of the task times the cost of the task. *)
Lemma
task_workload_le_num_of_arrivals_times_cost
:
task_workload
t
(
t
+
delta
)
<=
task_cost
tsk
*
number_of_task_arrivals
arr_seq
tsk
t
(
t
+
delta
)
.
Proof
.
rewrite
//
/
number_of_task_arrivals
-
sum1_size
big_distrr
/=
big_filter
.
rewrite
/
task_workload_between
/
workload
.
task_workload_between
/
task_workload
/
workload_of_jobs
.
rewrite
/
same_task
-
H_job_of_tsk
muln1
.
apply
leq_sum_seq
;
move
=>
j0
IN0
/
eqP
EQ
.
rewrite
-
EQ
;
apply
in_arrivals_implies_arrived
in
IN0
;
auto
.
by
apply
H_job_cost_le_task_cost
.
Qed
.
(* As a corollary, we prove that workload of task is
no larger the than task request bound function. *)
Corollary
task_workload_le_task_rbf
:
task_workload
t
(
t
+
delta
)
<=
task_rbf
delta
.
Proof
.
apply
leq_trans
with
(
task_cost
tsk
*
number_of_task_arrivals
arr_seq
tsk
t
(
t
+
delta
));
first
by
apply
task_workload_le_num_of_arrivals_times_cost
.
rewrite
leq_mul2l
;
apply
/
orP
;
right
.
rewrite
-
{
2
}[
delta
](
addKn
t
)
.
by
apply
H_is_arrival_bound
;
last
rewrite
leq_addr
.
Qed
.
(* Next, we prove that total workload of other tasks with
higher-or-equal priority is no larger than the total
request bound function. *)
Lemma
total_workload_le_total_rbf
:
total_ohep_workload
t
(
t
+
delta
)
<=
total_ohep_rbf
delta
.
Proof
.
set
l
:=
arrivals_between
t
(
t
+
delta
)
.
set
hep
:=
higher_eq_priority
.
apply
leq_trans
with
(
\
sum_
(
tsk'
<-
ts
|
hep
tsk'
tsk
&&
(
tsk'
!=
tsk
))
(
\
sum_
(
j0
<-
l
|
job_task
j0
==
tsk'
)
job_cost
j0
))
.
{
intros
.
rewrite
/
total_ohep_workload
/
workload_of_jobs
/
other_higher_eq_priority
.
rewrite
/
jlfp_higher_eq_priority
/
FP_to_JLFP
/
same_task
H_job_of_tsk
.
have
EXCHANGE
:=
exchange_big_dep
(
fun
x
=>
hep
(
job_task
x
)
tsk
&&
(
job_task
x
!=
tsk
))
.
rewrite
EXCHANGE
/=
;
last
by
move
=>
tsk0
j0
HEP
/
eqP
JOB0
;
rewrite
JOB0
.
rewrite
/
workload_of_jobs
-/
l
big_seq_cond
[
X
in
_
<=
X
]
big_seq_cond
.
apply
leq_sum
;
move
=>
j0
/
andP
[
IN0
HP0
]
.
rewrite
big_mkcond
(
big_rem
(
job_task
j0
))
/=
;
first
by
rewrite
HP0
andTb
eq_refl
;
apply
leq_addr
.
by
apply
in_arrivals_implies_arrived
in
IN0
;
apply
H_all_jobs_from_taskset
.
}
apply
leq_sum_seq
;
intros
tsk0
INtsk0
HP0
.
apply
leq_trans
with
(
task_cost
tsk0
*
size
(
task_arrivals_between
arr_seq
tsk0
t
(
t
+
delta
)))
.
{
rewrite
-
sum1_size
big_distrr
/=
big_filter
.
rewrite
/
workload_of_jobs
.
rewrite
muln1
/
l
/
arrivals_between
/
arrival_sequence
.
arrivals_between
.
apply
leq_sum_seq
;
move
=>
j0
IN0
/
eqP
EQ
.
by
rewrite
-
EQ
;
apply
H_job_cost_le_task_cost
;
apply
in_arrivals_implies_arrived
in
IN0
.
}
{
rewrite
leq_mul2l
;
apply
/
orP
;
right
.
rewrite
-
{
2
}[
delta
](
addKn
t
)
.
by
apply
H_is_arrival_bound
;
last
rewrite
leq_addr
.
}
Qed
.
(* Next, we prove that total workload of tasks with higher-or-equal
priority is no larger than the total request bound function. *)
Lemma
total_workload_le_total_rbf'
:
total_hep_workload
t
(
t
+
delta
)
<=
total_hep_rbf
delta
.
Proof
.
set
l
:=
arrivals_between
t
(
t
+
delta
)
.
set
hep
:=
higher_eq_priority
.
apply
leq_trans
with
(
n
:=
\
sum_
(
tsk'
<-
ts
|
hep
tsk'
tsk
)
(
\
sum_
(
j0
<-
l
|
job_task
j0
==
tsk'
)
job_cost
j0
))
.
{
rewrite
/
total_hep_workload
/
jlfp_higher_eq_priority
/
FP_to_JLFP
H_job_of_tsk
.
have
EXCHANGE
:=
exchange_big_dep
(
fun
x
=>
hep
(
job_task
x
)
tsk
)
.
rewrite
EXCHANGE
/=
;
clear
EXCHANGE
;
last
by
move
=>
tsk0
j0
HEP
/
eqP
JOB0
;
rewrite
JOB0
.
rewrite
/
workload_of_jobs
-/
l
big_seq_cond
[
X
in
_
<=
X
]
big_seq_cond
.
apply
leq_sum
;
move
=>
j0
/
andP
[
IN0
HP0
]
.
rewrite
big_mkcond
(
big_rem
(
job_task
j0
))
/=
;
first
by
rewrite
HP0
andTb
eq_refl
;
apply
leq_addr
.
by
apply
in_arrivals_implies_arrived
in
IN0
;
apply
H_all_jobs_from_taskset
.
}
apply
leq_sum_seq
;
intros
tsk0
INtsk0
HP0
.
apply
leq_trans
with
(
task_cost
tsk0
*
size
(
task_arrivals_between
arr_seq
tsk0
t
(
t
+
delta
)))
.
{
rewrite
-
sum1_size
big_distrr
/=
big_filter
.
rewrite
-/
l
/
workload_of_jobs
.
rewrite
muln1
.
apply
leq_sum_seq
;
move
=>
j0
IN0
/
eqP
EQ
.
rewrite
-
EQ
.
apply
H_job_cost_le_task_cost
.
by
apply
in_arrivals_implies_arrived
in
IN0
.
}
{
rewrite
leq_mul2l
;
apply
/
orP
;
right
.
rewrite
-
{
2
}[
delta
](
addKn
t
)
.
by
apply
H_is_arrival_bound
;
last
rewrite
leq_addr
.
}
Qed
.
(* Next, we prove that total workload of tasks is
no larger than the total request bound function. *)
Lemma
total_workload_le_total_rbf''
:
total_workload
t
(
t
+
delta
)
<=
total_rbf
delta
.
Proof
.
set
l
:=
arrivals_between
t
(
t
+
delta
)
.
apply
leq_trans
with
(
n
:=
\
sum_
(
tsk'
<-
ts
)
(
\
sum_
(
j0
<-
l
|
job_task
j0
==
tsk'
)
job_cost
j0
))
.
{
rewrite
/
total_workload
.
have
EXCHANGE
:=
exchange_big_dep
predT
.
rewrite
EXCHANGE
/=
;
clear
EXCHANGE
;
last
by
done
.
rewrite
/
workload_of_jobs
-/
l
big_seq_cond
[
X
in
_
<=
X
]
big_seq_cond
.
apply
leq_sum
;
move
=>
j0
/
andP
[
IN0
HP0
]
.
rewrite
big_mkcond
(
big_rem
(
job_task
j0
))
/=.
rewrite
eq_refl
;
apply
leq_addr
.
by
apply
in_arrivals_implies_arrived
in
IN0
;
apply
H_all_jobs_from_taskset
.
}
apply
leq_sum_seq
;
intros
tsk0
INtsk0
HP0
.
apply
leq_trans
with
(
task_cost
tsk0
*
size
(
task_arrivals_between
arr_seq
tsk0
t
(
t
+
delta
)))
.
{
rewrite
-
sum1_size
big_distrr
/=
big_filter
.
rewrite
-/
l
/
workload_of_jobs
.
rewrite
muln1
.
apply
leq_sum_seq
;
move
=>
j0
IN0
/
eqP
EQ
.
rewrite
-
EQ
.
apply
H_job_cost_le_task_cost
.
by
apply
in_arrivals_implies_arrived
in
IN0
.
}
{
rewrite
leq_mul2l
;
apply
/
orP
;
right
.
rewrite
-
{
2
}[
delta
](
addKn
t
)
.
by
apply
H_is_arrival_bound
;
last
rewrite
leq_addr
.
}
Qed
.
End
WorkloadIsBoundedByRBF
.
End
ProofWorkloadBound
.
End
TaskWorkloadBoundedByArrivalCurves
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment