From 070d81903df9f814fd02afd46ba9b0a99b9f4c95 Mon Sep 17 00:00:00 2001 From: Sergei Bozhko <sbozhko@mpi-sws.org> Date: Tue, 17 Sep 2019 15:22:32 +0200 Subject: [PATCH] Add lemmas about workload bound --- restructuring/analysis/arrival/rbf.v | 95 ++++++ .../analysis/arrival/workload_bound.v | 294 ++++++++++++++++++ 2 files changed, 389 insertions(+) create mode 100644 restructuring/analysis/arrival/rbf.v create mode 100644 restructuring/analysis/arrival/workload_bound.v diff --git a/restructuring/analysis/arrival/rbf.v b/restructuring/analysis/arrival/rbf.v new file mode 100644 index 000000000..1bf9b7c51 --- /dev/null +++ b/restructuring/analysis/arrival/rbf.v @@ -0,0 +1,95 @@ +From rt.util Require Import all. +From rt.restructuring.behavior Require Import schedule. +From rt.restructuring.model Require Import job task. +From rt.restructuring.model.arrival Require Import task_arrivals arrival_curves. +From rt.restructuring.analysis Require Import arrival.workload_bound. + +From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop. + +(** * Request Bound Functions (RBF) *) +(** In this section, we prove some properties of Request Bound Functions (RBF). *) +Section RequestBoundFunctions. + + (* Consider any type of tasks ... *) + Context {Task : TaskType}. + Context `{TaskCost Task}. + + (* ... and any type of jobs associated with these tasks. *) + Context {Job : JobType}. + Context `{JobTask Job Task}. + Context `{JobArrival Job}. + + (* Consider any arrival sequence. *) + Variable arr_seq : arrival_sequence Job. + Hypothesis H_arrival_times_are_consistent: + consistent_arrival_times arr_seq. + + (* Let tsk be any task. *) + Variable tsk : Task. + + (* Let max_arrivals be a family of valid arrival curves, i.e., for any task tsk in ts + [max_arrival tsk] is (1) an arrival bound of tsk, and (2) it is a monotonic function + that equals 0 for the empty interval delta = 0. *) + Context `{MaxArrivals Task}. + Hypothesis H_valid_arrival_curve : valid_arrival_curve tsk (max_arrivals tsk). + Hypothesis H_is_arrival_curve : respects_max_arrivals arr_seq tsk (max_arrivals tsk). + + (* Let's define some local names for clarity. *) + Let task_rbf := task_request_bound_function tsk. + + (* We prove that [task_rbf 0] is equal to 0. *) + Lemma task_rbf_0_zero: + task_rbf 0 = 0. + Proof. + rewrite /task_rbf /task_request_bound_function. + apply/eqP; rewrite muln_eq0; apply/orP; right; apply/eqP. + by move: H_valid_arrival_curve => [T1 T2]. + Qed. + + (* We prove that task_rbf is monotone. *) + Lemma task_rbf_monotone: + monotone task_rbf leq. + Proof. + rewrite /monotone; intros ? ? LE. + rewrite /task_rbf /task_request_bound_function leq_mul2l. + apply/orP; right. + by move: H_valid_arrival_curve => [_ T]; apply T. + Qed. + + (* Consider any job j of tsk. This guarantees that + there exists at least one job of task tsk. *) + Variable j : Job. + Hypothesis H_j_arrives : arrives_in arr_seq j. + Hypothesis H_job_of_tsk : job_task j = tsk. + + (* Then we prove that task_rbf 1 is greater than or equal to task cost. *) + Lemma task_rbf_1_ge_task_cost: + task_rbf 1 >= task_cost tsk. + Proof. + have ALT: forall n, n = 0 \/ n > 0. + { by clear; intros n; destruct n; [left | right]. } + specialize (ALT (task_cost tsk)); destruct ALT as [Z | POS]; first by rewrite Z. + rewrite leqNgt; apply/negP; intros CONTR. + move: H_is_arrival_curve => ARRB. + specialize (ARRB (job_arrival j) (job_arrival j + 1)). + feed ARRB; first by rewrite leq_addr. + rewrite addKn in ARRB. + move: CONTR; rewrite /task_rbf /task_request_bound_function; move => CONTR. + move: CONTR; rewrite -{2}[task_cost tsk]muln1 ltn_mul2l; move => /andP [_ CONTR]. + move: CONTR; rewrite -addn1 -{3}[1]add0n leq_add2r leqn0; move => /eqP CONTR. + move: ARRB; rewrite CONTR leqn0 eqn0Ngt; move => /negP T; apply: T. + rewrite /number_of_task_arrivals -has_predT. + rewrite /task_arrivals_between. + apply/hasP; exists j; last by done. + rewrite /arrivals_between addn1 big_nat_recl; last by done. + rewrite big_geq ?cats0; last by done. + rewrite mem_filter. + apply/andP; split. + - by apply/eqP. + - move: H_j_arrives => [t ARR]. + move: (ARR) => CONS. + apply H_arrival_times_are_consistent in CONS. + by rewrite CONS. + Qed. + +End RequestBoundFunctions. \ No newline at end of file diff --git a/restructuring/analysis/arrival/workload_bound.v b/restructuring/analysis/arrival/workload_bound.v new file mode 100644 index 000000000..f37679204 --- /dev/null +++ b/restructuring/analysis/arrival/workload_bound.v @@ -0,0 +1,294 @@ +From rt.util Require Import sum. +From rt.restructuring.behavior Require Import schedule. +From rt.restructuring.model Require Import task schedule.priority_based.priorities arrival.arrival_curves. +From rt.restructuring.model.arrival Require Import task_arrivals arrival_curves. +From rt.restructuring.analysis Require Import + workload ideal_schedule basic_facts.arrivals. + +From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop. + +(** * Task Workload Bounded by Arrival Curves *) +Section TaskWorkloadBoundedByArrivalCurves. + + (* Consider any type of tasks ... *) + Context {Task : TaskType}. + Context `{TaskCost Task}. + + (* ... and any type of jobs associated with these tasks. *) + Context {Job : JobType}. + Context `{JobTask Job Task}. + Context `{JobArrival Job}. + Context `{JobCost Job}. + + (* Consider any arrival sequence with consistent, non-duplicate arrivals... *) + Variable arr_seq : arrival_sequence Job. + Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq. + Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq. + + (* ... and any ideal uniprocessor schedule of this arrival sequence.*) + Variable sched : schedule (ideal.processor_state Job). + Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq. + + (* Consider an FP policy that indicates a higher-or-equal priority relation. *) + Variable higher_eq_priority : FP_policy Task. + Let jlfp_higher_eq_priority := FP_to_JLFP Job Task. + + (* For simplicity, let's define some local names. *) + Let arrivals_between := arrivals_between arr_seq. + + (* We define the notion of request bound function. *) + Section RequestBoundFunction. + + (* Let MaxArrivals denote any function that takes a task and an interval length + and returns the associated number of job arrivals of the task. *) + Context `{MaxArrivals Task}. + + (* In this section, we define a bound for the workload of a single task + under uniprocessor FP scheduling. *) + Section SingleTask. + + (* Consider any task tsk that is to be scheduled in an interval of length delta. *) + Variable tsk : Task. + Variable delta : duration. + + (* We define the following workload bound for the task. *) + Definition task_request_bound_function := task_cost tsk * max_arrivals tsk delta. + + End SingleTask. + + (* In this section, we define a bound for the workload of multiple tasks. *) + Section AllTasks. + + (* Consider a task set ts... *) + Variable ts : list Task. + + (* ...and let tsk be any task in task set. *) + Variable tsk : Task. + + (* Let delta be the length of the interval of interest. *) + Variable delta : duration. + + (* Recall the definition of higher-or-equal-priority task and + the per-task workload bound for FP scheduling. *) + Let is_hep_task tsk_other := higher_eq_priority tsk_other tsk. + Let is_other_hep_task tsk_other := higher_eq_priority tsk_other tsk && (tsk_other != tsk). + + (* Using the sum of individual workload bounds, we define the following bound + for the total workload of tasks in any interval of length delta. *) + Definition total_request_bound_function := + \sum_(tsk <- ts) task_request_bound_function tsk delta. + + (* Similarly, we define the following bound for the total workload of tasks of + higher-or-equal priority (with respect to tsk) in any interval of length delta. *) + Definition total_hep_request_bound_function_FP := + \sum_(tsk_other <- ts | is_hep_task tsk_other) + task_request_bound_function tsk_other delta. + + (* We also define a bound for the total workload of higher-or-equal + priority tasks other than tsk in any interval of length delta. *) + Definition total_ohep_request_bound_function_FP := + \sum_(tsk_other <- ts | is_other_hep_task tsk_other) + task_request_bound_function tsk_other delta. + + End AllTasks. + + End RequestBoundFunction. + + (* In this section we prove some lemmas about request bound functions. *) + Section ProofWorkloadBound. + + (* Consider a task set ts... *) + Variable ts : list Task. + + (* ...and let tsk be any task in ts. *) + Variable tsk : Task. + Hypothesis H_tsk_in_ts : tsk \in ts. + + (* Assume that the job costs are no larger than the task costs. *) + Hypothesis H_job_cost_le_task_cost : + cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq. + + (* Next, we assume that all jobs come from the task set. *) + Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts. + + (* Let max_arrivals be any arrival bound for taskset ts. *) + Context `{MaxArrivals Task}. + Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts. + + (* Let's define some local names for clarity. *) + Let task_rbf := task_request_bound_function tsk. + Let total_rbf := total_request_bound_function ts. + Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk. + Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk. + + (* Next, we consider any job j of tsk. *) + Variable j : Job. + Hypothesis H_j_arrives : arrives_in arr_seq j. + Hypothesis H_job_of_tsk : job_task j = tsk. + + (* Next, we say that two jobs j1 and j2 are in relation other_higher_eq_priority, iff + j1 has higher or equal priority than j2 and is produced by a different task. *) + Let other_higher_eq_priority j1 j2 := jlfp_higher_eq_priority j1 j2 && (~~ same_task j1 j2). + + (* Next, we recall the notions of total workload of jobs... *) + Let total_workload t1 t2 := workload_of_jobs predT (arrivals_between t1 t2). + + (* ...notions of workload of higher or equal priority jobs... *) + Let total_hep_workload t1 t2 := + workload_of_jobs (fun j_other => jlfp_higher_eq_priority j_other j) (arrivals_between t1 t2). + + (* ... workload of other higher or equal priority jobs... *) + Let total_ohep_workload t1 t2 := + workload_of_jobs (fun j_other => other_higher_eq_priority j_other j) (arrivals_between t1 t2). + + (* ... and the workload of jobs of the same task as job j. *) + Let task_workload t1 t2 := + workload_of_jobs (job_of_task tsk) (arrivals_between t1 t2). + + (* In this section we prove that the workload of any jobs is + no larger than the request bound function. *) + Section WorkloadIsBoundedByRBF. + + (* Consider any time t and any interval of length delta. *) + Variable t : instant. + Variable delta : instant. + + (* First, we show that workload of task tsk is bounded by + the number of arrivals of the task times the cost of the task. *) + Lemma task_workload_le_num_of_arrivals_times_cost: + task_workload t (t + delta) + <= task_cost tsk * number_of_task_arrivals arr_seq tsk t (t + delta). + Proof. + rewrite // /number_of_task_arrivals -sum1_size big_distrr /= big_filter. + rewrite /task_workload_between /workload.task_workload_between /task_workload /workload_of_jobs. + rewrite /same_task -H_job_of_tsk muln1. + apply leq_sum_seq; move => j0 IN0 /eqP EQ. + rewrite -EQ; apply in_arrivals_implies_arrived in IN0; auto. + by apply H_job_cost_le_task_cost. + Qed. + + (* As a corollary, we prove that workload of task is + no larger the than task request bound function. *) + Corollary task_workload_le_task_rbf: + task_workload t (t + delta) <= task_rbf delta. + Proof. + apply leq_trans with + (task_cost tsk * number_of_task_arrivals arr_seq tsk t (t + delta)); + first by apply task_workload_le_num_of_arrivals_times_cost. + rewrite leq_mul2l; apply/orP; right. + rewrite -{2}[delta](addKn t). + by apply H_is_arrival_bound; last rewrite leq_addr. + Qed. + + (* Next, we prove that total workload of other tasks with + higher-or-equal priority is no larger than the total + request bound function. *) + Lemma total_workload_le_total_rbf: + total_ohep_workload t (t + delta) <= total_ohep_rbf delta. + Proof. + set l := arrivals_between t (t + delta). + set hep := higher_eq_priority. + apply leq_trans with + (\sum_(tsk' <- ts | hep tsk' tsk && (tsk' != tsk)) + (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)). + { intros. + rewrite /total_ohep_workload /workload_of_jobs /other_higher_eq_priority. + rewrite /jlfp_higher_eq_priority /FP_to_JLFP /same_task H_job_of_tsk. + have EXCHANGE := exchange_big_dep (fun x => hep (job_task x) tsk && (job_task x != tsk)). + rewrite EXCHANGE /=; last by move => tsk0 j0 HEP /eqP JOB0; rewrite JOB0. + rewrite /workload_of_jobs -/l big_seq_cond [X in _ <= X]big_seq_cond. + apply leq_sum; move => j0 /andP [IN0 HP0]. + rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr. + by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset. + } + apply leq_sum_seq; intros tsk0 INtsk0 HP0. + apply leq_trans with + (task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + delta))). + { rewrite -sum1_size big_distrr /= big_filter. + rewrite /workload_of_jobs. + rewrite muln1 /l /arrivals_between /arrival_sequence.arrivals_between. + apply leq_sum_seq; move => j0 IN0 /eqP EQ. + by rewrite -EQ; apply H_job_cost_le_task_cost; apply in_arrivals_implies_arrived in IN0. + } + { rewrite leq_mul2l; apply/orP; right. + rewrite -{2}[delta](addKn t). + by apply H_is_arrival_bound; last rewrite leq_addr. + } + Qed. + + (* Next, we prove that total workload of tasks with higher-or-equal + priority is no larger than the total request bound function. *) + Lemma total_workload_le_total_rbf': + total_hep_workload t (t + delta) <= total_hep_rbf delta. + Proof. + set l := arrivals_between t (t + delta). + set hep := higher_eq_priority. + apply leq_trans with + (n := \sum_(tsk' <- ts | hep tsk' tsk) + (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)). + { rewrite /total_hep_workload /jlfp_higher_eq_priority /FP_to_JLFP H_job_of_tsk. + have EXCHANGE := exchange_big_dep (fun x => hep (job_task x) tsk). + rewrite EXCHANGE /=; clear EXCHANGE; last by move => tsk0 j0 HEP /eqP JOB0; rewrite JOB0. + rewrite /workload_of_jobs -/l big_seq_cond [X in _ <= X]big_seq_cond. + apply leq_sum; move => j0 /andP [IN0 HP0]. + rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr. + by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset. + } + apply leq_sum_seq; intros tsk0 INtsk0 HP0. + apply leq_trans with + (task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + delta))). + { rewrite -sum1_size big_distrr /= big_filter. + rewrite -/l /workload_of_jobs. + rewrite muln1. + apply leq_sum_seq; move => j0 IN0 /eqP EQ. + rewrite -EQ. + apply H_job_cost_le_task_cost. + by apply in_arrivals_implies_arrived in IN0. + } + { rewrite leq_mul2l; apply/orP; right. + rewrite -{2}[delta](addKn t). + by apply H_is_arrival_bound; last rewrite leq_addr. + } + Qed. + + (* Next, we prove that total workload of tasks is + no larger than the total request bound function. *) + Lemma total_workload_le_total_rbf'': + total_workload t (t + delta) <= total_rbf delta. + Proof. + set l := arrivals_between t (t + delta). + apply leq_trans with + (n := \sum_(tsk' <- ts) + (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)). + { rewrite /total_workload. + have EXCHANGE := exchange_big_dep predT. + rewrite EXCHANGE /=; clear EXCHANGE; last by done. + rewrite /workload_of_jobs -/l big_seq_cond [X in _ <= X]big_seq_cond. + apply leq_sum; move => j0 /andP [IN0 HP0]. + rewrite big_mkcond (big_rem (job_task j0)) /=. + rewrite eq_refl; apply leq_addr. + by apply in_arrivals_implies_arrived in IN0; + apply H_all_jobs_from_taskset. + } + apply leq_sum_seq; intros tsk0 INtsk0 HP0. + apply leq_trans with + (task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + delta))). + { rewrite -sum1_size big_distrr /= big_filter. + rewrite -/l /workload_of_jobs. + rewrite muln1. + apply leq_sum_seq; move => j0 IN0 /eqP EQ. + rewrite -EQ. + apply H_job_cost_le_task_cost. + by apply in_arrivals_implies_arrived in IN0. + } + { rewrite leq_mul2l; apply/orP; right. + rewrite -{2}[delta](addKn t). + by apply H_is_arrival_bound; last rewrite leq_addr. + } + Qed. + + End WorkloadIsBoundedByRBF. + + End ProofWorkloadBound. + +End TaskWorkloadBoundedByArrivalCurves. \ No newline at end of file -- GitLab