From 070d81903df9f814fd02afd46ba9b0a99b9f4c95 Mon Sep 17 00:00:00 2001
From: Sergei Bozhko <sbozhko@mpi-sws.org>
Date: Tue, 17 Sep 2019 15:22:32 +0200
Subject: [PATCH] Add lemmas about workload bound

---
 restructuring/analysis/arrival/rbf.v          |  95 ++++++
 .../analysis/arrival/workload_bound.v         | 294 ++++++++++++++++++
 2 files changed, 389 insertions(+)
 create mode 100644 restructuring/analysis/arrival/rbf.v
 create mode 100644 restructuring/analysis/arrival/workload_bound.v

diff --git a/restructuring/analysis/arrival/rbf.v b/restructuring/analysis/arrival/rbf.v
new file mode 100644
index 000000000..1bf9b7c51
--- /dev/null
+++ b/restructuring/analysis/arrival/rbf.v
@@ -0,0 +1,95 @@
+From rt.util Require Import all.
+From rt.restructuring.behavior Require Import schedule.
+From rt.restructuring.model Require Import job task.
+From rt.restructuring.model.arrival Require Import task_arrivals arrival_curves.
+From rt.restructuring.analysis Require Import arrival.workload_bound.
+
+From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
+
+(** * Request Bound Functions (RBF) *)
+(** In this section, we prove some properties of Request Bound Functions (RBF). *)
+Section RequestBoundFunctions.
+  
+  (* Consider any type of tasks ... *)
+  Context {Task : TaskType}.
+  Context `{TaskCost Task}.
+
+  (* ... and any type of jobs associated with these tasks. *)
+  Context {Job : JobType}.
+  Context `{JobTask Job Task}.
+  Context `{JobArrival Job}.
+  
+  (* Consider any arrival sequence. *)
+  Variable arr_seq : arrival_sequence Job.
+  Hypothesis H_arrival_times_are_consistent:
+    consistent_arrival_times arr_seq.
+
+  (* Let tsk be any task. *)
+  Variable tsk : Task.
+
+  (* Let max_arrivals be a family of valid arrival curves, i.e., for any task tsk in ts 
+     [max_arrival tsk] is (1) an arrival bound of tsk, and (2) it is a monotonic function 
+     that equals 0 for the empty interval delta = 0. *)
+  Context `{MaxArrivals Task}.
+  Hypothesis H_valid_arrival_curve : valid_arrival_curve tsk (max_arrivals tsk).
+  Hypothesis H_is_arrival_curve : respects_max_arrivals arr_seq tsk (max_arrivals tsk).
+  
+  (* Let's define some local names for clarity. *)
+  Let task_rbf := task_request_bound_function tsk.
+
+  (* We prove that [task_rbf 0] is equal to 0. *)
+  Lemma task_rbf_0_zero:
+    task_rbf 0 = 0.
+  Proof.
+    rewrite /task_rbf /task_request_bound_function.
+    apply/eqP; rewrite muln_eq0; apply/orP; right; apply/eqP.
+      by move: H_valid_arrival_curve => [T1 T2].
+  Qed.
+  
+  (* We prove that task_rbf is monotone. *)
+  Lemma task_rbf_monotone:
+    monotone task_rbf leq.
+  Proof.
+    rewrite /monotone; intros ? ? LE.
+    rewrite /task_rbf /task_request_bound_function leq_mul2l.
+    apply/orP; right.
+      by move: H_valid_arrival_curve => [_ T]; apply T.
+  Qed.      
+  
+  (* Consider any job j of tsk. This guarantees that 
+     there exists at least one job of task tsk. *)
+  Variable j : Job.
+  Hypothesis H_j_arrives : arrives_in arr_seq j.
+  Hypothesis H_job_of_tsk : job_task j = tsk.
+  
+  (* Then we prove that task_rbf 1 is greater than or equal to task cost. *)
+  Lemma task_rbf_1_ge_task_cost:
+    task_rbf 1 >= task_cost tsk.
+  Proof.
+    have ALT: forall n, n = 0 \/ n > 0.
+    { by clear; intros n; destruct n; [left | right]. }
+    specialize (ALT (task_cost tsk)); destruct ALT as [Z | POS]; first by rewrite Z. 
+    rewrite leqNgt; apply/negP; intros CONTR.
+    move: H_is_arrival_curve => ARRB.
+    specialize (ARRB (job_arrival j) (job_arrival j + 1)).
+    feed ARRB; first by rewrite leq_addr.
+    rewrite addKn in ARRB.
+    move: CONTR; rewrite /task_rbf /task_request_bound_function; move => CONTR.
+    move: CONTR; rewrite -{2}[task_cost tsk]muln1 ltn_mul2l; move => /andP [_ CONTR].
+    move: CONTR; rewrite -addn1 -{3}[1]add0n leq_add2r leqn0; move => /eqP CONTR.
+    move: ARRB; rewrite CONTR leqn0 eqn0Ngt; move => /negP T; apply: T.
+    rewrite /number_of_task_arrivals -has_predT. 
+    rewrite /task_arrivals_between.
+    apply/hasP; exists j; last by done.
+    rewrite /arrivals_between addn1 big_nat_recl; last by done. 
+    rewrite big_geq ?cats0; last by done.
+    rewrite mem_filter.
+    apply/andP; split.
+    - by apply/eqP.
+    - move: H_j_arrives => [t ARR].
+      move: (ARR) => CONS.
+      apply H_arrival_times_are_consistent in CONS.
+        by rewrite CONS.
+  Qed.
+  
+End RequestBoundFunctions.
\ No newline at end of file
diff --git a/restructuring/analysis/arrival/workload_bound.v b/restructuring/analysis/arrival/workload_bound.v
new file mode 100644
index 000000000..f37679204
--- /dev/null
+++ b/restructuring/analysis/arrival/workload_bound.v
@@ -0,0 +1,294 @@
+From rt.util Require Import sum.
+From rt.restructuring.behavior Require Import schedule.
+From rt.restructuring.model Require Import task schedule.priority_based.priorities arrival.arrival_curves.
+From rt.restructuring.model.arrival Require Import task_arrivals arrival_curves.
+From rt.restructuring.analysis Require Import
+     workload ideal_schedule basic_facts.arrivals.
+
+From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq path fintype bigop.
+
+(** * Task Workload Bounded by Arrival Curves *)
+Section TaskWorkloadBoundedByArrivalCurves.
+
+  (* Consider any type of tasks ... *)
+  Context {Task : TaskType}.
+  Context `{TaskCost Task}.
+
+  (*  ... and any type of jobs associated with these tasks. *)
+  Context {Job : JobType}.
+  Context `{JobTask Job Task}.
+  Context `{JobArrival Job}.
+  Context `{JobCost Job}.
+  
+  (* Consider any arrival sequence with consistent, non-duplicate arrivals... *)
+  Variable arr_seq : arrival_sequence Job.
+  Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
+  Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
+
+  (* ... and any ideal uniprocessor schedule of this arrival sequence.*)
+  Variable sched : schedule (ideal.processor_state Job).
+  Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq.
+
+  (* Consider an FP policy that indicates a higher-or-equal priority relation. *)
+  Variable higher_eq_priority : FP_policy Task.
+  Let jlfp_higher_eq_priority := FP_to_JLFP Job Task.
+
+  (* For simplicity, let's define some local names. *)
+  Let arrivals_between := arrivals_between arr_seq.
+  
+  (* We define the notion of request bound function. *)
+  Section RequestBoundFunction.
+    
+    (* Let MaxArrivals denote any function that takes a task and an interval length
+       and returns the associated number of job arrivals of the task. *) 
+    Context `{MaxArrivals Task}.
+    
+    (* In this section, we define a bound for the workload of a single task
+       under uniprocessor FP scheduling. *)
+    Section SingleTask.
+
+      (* Consider any task tsk that is to be scheduled in an interval of length delta. *)
+      Variable tsk : Task.
+      Variable delta : duration.
+
+      (* We define the following workload bound for the task. *)
+      Definition task_request_bound_function := task_cost tsk * max_arrivals tsk delta.
+
+    End SingleTask.
+
+    (* In this section, we define a bound for the workload of multiple tasks. *)
+    Section AllTasks.
+
+      (* Consider a task set ts... *)
+      Variable ts : list Task.
+
+      (* ...and let tsk be any task in task set. *)
+      Variable tsk : Task.
+      
+      (* Let delta be the length of the interval of interest. *)
+      Variable delta : duration.
+      
+      (* Recall the definition of higher-or-equal-priority task and
+         the per-task workload bound for FP scheduling. *)
+      Let is_hep_task tsk_other := higher_eq_priority tsk_other tsk.
+      Let is_other_hep_task tsk_other := higher_eq_priority tsk_other tsk && (tsk_other != tsk).
+
+      (* Using the sum of individual workload bounds, we define the following bound
+         for the total workload of tasks in any interval of length delta. *)
+      Definition total_request_bound_function :=
+        \sum_(tsk <- ts) task_request_bound_function tsk delta.
+      
+      (* Similarly, we define the following bound for the total workload of tasks of 
+         higher-or-equal priority (with respect to tsk) in any interval of length delta. *)
+      Definition total_hep_request_bound_function_FP :=
+        \sum_(tsk_other <- ts | is_hep_task tsk_other)
+         task_request_bound_function tsk_other delta.
+      
+      (* We also define a bound for the total workload of higher-or-equal 
+         priority tasks other than tsk in any interval of length delta. *)
+      Definition total_ohep_request_bound_function_FP :=
+        \sum_(tsk_other <- ts | is_other_hep_task tsk_other)
+         task_request_bound_function tsk_other delta.
+      
+    End AllTasks.
+
+  End RequestBoundFunction.
+
+  (* In this section we prove some lemmas about request bound functions. *)
+  Section ProofWorkloadBound.
+
+    (* Consider a task set ts... *)
+    Variable ts : list Task.
+
+    (* ...and let tsk be any task in ts. *)
+    Variable tsk : Task.
+    Hypothesis H_tsk_in_ts : tsk \in ts.
+
+    (* Assume that the job costs are no larger than the task costs. *)
+    Hypothesis H_job_cost_le_task_cost :
+      cost_of_jobs_from_arrival_sequence_le_task_cost arr_seq.
+
+    (* Next, we assume that all jobs come from the task set. *)
+    Hypothesis H_all_jobs_from_taskset : all_jobs_from_taskset arr_seq ts.
+      
+    (* Let max_arrivals be any arrival bound for taskset ts. *)
+    Context `{MaxArrivals Task}.
+    Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts. 
+    
+    (* Let's define some local names for clarity. *)
+    Let task_rbf := task_request_bound_function tsk.
+    Let total_rbf := total_request_bound_function ts.
+    Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk.
+    Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk.
+
+    (* Next, we consider any job j of tsk. *)
+    Variable j : Job.
+    Hypothesis H_j_arrives : arrives_in arr_seq j.
+    Hypothesis H_job_of_tsk : job_task j = tsk.
+    
+    (* Next, we say that two jobs j1 and j2 are in relation other_higher_eq_priority, iff 
+       j1 has higher or equal priority than j2 and is produced by a different task. *)
+    Let other_higher_eq_priority j1 j2 := jlfp_higher_eq_priority j1 j2 && (~~ same_task j1 j2).
+
+    (* Next, we recall the notions of total workload of jobs... *)
+    Let total_workload t1 t2 := workload_of_jobs predT (arrivals_between t1 t2).
+    
+    (* ...notions of workload of higher or equal priority jobs... *)
+    Let total_hep_workload t1 t2 :=
+      workload_of_jobs (fun j_other => jlfp_higher_eq_priority j_other j) (arrivals_between t1 t2).
+    
+    (* ... workload of other higher or equal priority jobs... *)
+    Let total_ohep_workload t1 t2 :=
+      workload_of_jobs (fun j_other => other_higher_eq_priority j_other j) (arrivals_between t1 t2).
+
+    (* ... and the workload of jobs of the same task as job j. *)
+    Let task_workload t1 t2 :=
+      workload_of_jobs (job_of_task tsk) (arrivals_between t1 t2).
+    
+    (* In this section we prove that the workload of any jobs is 
+       no larger than the request bound function. *) 
+    Section WorkloadIsBoundedByRBF.
+
+      (* Consider any time t and any interval of length delta. *)
+      Variable t : instant.
+      Variable delta : instant.
+
+      (* First, we show that workload of task tsk is bounded by 
+         the number of arrivals of the task times the cost of the task. *)
+      Lemma task_workload_le_num_of_arrivals_times_cost:
+        task_workload t (t + delta)
+        <= task_cost tsk * number_of_task_arrivals arr_seq tsk t (t + delta).
+      Proof.
+        rewrite // /number_of_task_arrivals -sum1_size big_distrr /= big_filter.
+        rewrite /task_workload_between /workload.task_workload_between /task_workload /workload_of_jobs.
+        rewrite /same_task -H_job_of_tsk muln1.
+        apply leq_sum_seq; move => j0 IN0 /eqP EQ.
+        rewrite -EQ; apply in_arrivals_implies_arrived in IN0; auto.
+          by apply H_job_cost_le_task_cost.
+      Qed.
+      
+      (* As a corollary, we prove that workload of task is 
+         no larger the than task request bound function. *)
+      Corollary task_workload_le_task_rbf:
+        task_workload t (t + delta) <= task_rbf delta.
+      Proof.    
+        apply leq_trans with
+            (task_cost tsk *  number_of_task_arrivals arr_seq tsk t (t + delta));
+          first by apply task_workload_le_num_of_arrivals_times_cost.
+        rewrite leq_mul2l; apply/orP; right.
+        rewrite -{2}[delta](addKn t).
+          by apply H_is_arrival_bound; last rewrite leq_addr.
+      Qed.
+
+      (* Next, we prove that total workload of other tasks with
+         higher-or-equal priority is no larger than the total
+         request bound function. *)
+      Lemma total_workload_le_total_rbf:
+        total_ohep_workload t (t + delta) <= total_ohep_rbf delta.
+      Proof.        
+        set l := arrivals_between t (t + delta).
+        set hep := higher_eq_priority.        
+        apply leq_trans with
+            (\sum_(tsk' <- ts | hep tsk' tsk && (tsk' != tsk))
+              (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
+        { intros.
+          rewrite /total_ohep_workload /workload_of_jobs /other_higher_eq_priority.
+          rewrite /jlfp_higher_eq_priority /FP_to_JLFP /same_task H_job_of_tsk. 
+          have EXCHANGE := exchange_big_dep (fun x => hep (job_task x) tsk && (job_task x != tsk)).
+          rewrite EXCHANGE /=; last by move => tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
+          rewrite /workload_of_jobs -/l big_seq_cond [X in _ <= X]big_seq_cond.
+          apply leq_sum; move => j0 /andP [IN0 HP0].
+          rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
+            by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
+        }
+        apply leq_sum_seq; intros tsk0 INtsk0 HP0.
+        apply leq_trans with
+            (task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + delta))).
+        { rewrite -sum1_size big_distrr /= big_filter.
+          rewrite /workload_of_jobs.
+          rewrite  muln1 /l /arrivals_between /arrival_sequence.arrivals_between. 
+          apply leq_sum_seq; move => j0 IN0 /eqP EQ.
+            by rewrite -EQ; apply H_job_cost_le_task_cost; apply in_arrivals_implies_arrived in IN0.
+        }
+        { rewrite leq_mul2l; apply/orP; right.
+          rewrite -{2}[delta](addKn t).
+            by apply H_is_arrival_bound; last rewrite leq_addr.
+        }
+      Qed.
+
+      (* Next, we prove that total workload of tasks with higher-or-equal 
+         priority is no larger than the total request bound function. *)
+      Lemma total_workload_le_total_rbf':
+        total_hep_workload t (t + delta) <= total_hep_rbf delta.
+      Proof.
+        set l := arrivals_between t (t + delta).
+        set hep := higher_eq_priority.
+        apply leq_trans with
+            (n := \sum_(tsk' <- ts | hep tsk' tsk)
+                   (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
+        { rewrite /total_hep_workload /jlfp_higher_eq_priority /FP_to_JLFP H_job_of_tsk. 
+          have EXCHANGE := exchange_big_dep (fun x => hep (job_task x) tsk).
+          rewrite EXCHANGE /=; clear EXCHANGE; last by move => tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
+          rewrite /workload_of_jobs -/l big_seq_cond [X in _ <= X]big_seq_cond.
+          apply leq_sum; move => j0 /andP [IN0 HP0].
+          rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
+            by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
+        }
+        apply leq_sum_seq; intros tsk0 INtsk0 HP0.
+        apply leq_trans with
+            (task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + delta))).
+        { rewrite -sum1_size big_distrr /= big_filter.
+          rewrite -/l /workload_of_jobs.
+          rewrite muln1.
+          apply leq_sum_seq; move => j0 IN0 /eqP EQ.
+          rewrite -EQ.
+          apply H_job_cost_le_task_cost.
+            by apply in_arrivals_implies_arrived in IN0.
+        }
+        { rewrite leq_mul2l; apply/orP; right.
+          rewrite -{2}[delta](addKn t).
+            by apply H_is_arrival_bound; last rewrite leq_addr.
+        }
+      Qed.
+      
+      (* Next, we prove that total workload of tasks is 
+         no larger than the total request bound function. *)
+      Lemma total_workload_le_total_rbf'':
+        total_workload t (t + delta) <= total_rbf delta.
+      Proof.
+        set l := arrivals_between t (t + delta).
+        apply leq_trans with
+            (n := \sum_(tsk' <- ts)
+                   (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
+        { rewrite /total_workload.
+          have EXCHANGE := exchange_big_dep predT.
+          rewrite EXCHANGE /=; clear EXCHANGE; last by done. 
+          rewrite /workload_of_jobs -/l big_seq_cond [X in _ <= X]big_seq_cond.
+          apply leq_sum; move => j0 /andP [IN0 HP0].
+          rewrite big_mkcond (big_rem (job_task j0)) /=.
+          rewrite eq_refl; apply leq_addr.
+            by apply in_arrivals_implies_arrived in IN0;
+              apply H_all_jobs_from_taskset.
+        }
+        apply leq_sum_seq; intros tsk0 INtsk0 HP0.
+        apply leq_trans with
+            (task_cost tsk0 * size (task_arrivals_between arr_seq tsk0 t (t + delta))).
+        { rewrite -sum1_size big_distrr /= big_filter.
+          rewrite -/l /workload_of_jobs.
+          rewrite muln1.
+          apply leq_sum_seq; move => j0 IN0 /eqP EQ.
+          rewrite -EQ.
+          apply H_job_cost_le_task_cost.
+            by apply in_arrivals_implies_arrived in IN0.
+        }
+        { rewrite leq_mul2l; apply/orP; right.
+          rewrite -{2}[delta](addKn t).
+            by apply H_is_arrival_bound; last rewrite leq_addr.
+        }
+      Qed.  
+
+    End WorkloadIsBoundedByRBF.
+
+  End ProofWorkloadBound.
+  
+End TaskWorkloadBoundedByArrivalCurves.
\ No newline at end of file
-- 
GitLab