Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
examples
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William Mansky
examples
Commits
3c9a2592
Commit
3c9a2592
authored
1 month ago
by
William Mansky
Browse files
Options
Downloads
Patches
Plain Diff
two more styles of lock spec
parent
9806de16
No related branches found
No related tags found
No related merge requests found
Pipeline
#118212
passed
1 month ago
Stage: build
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/locks/lockspecs/atomic_lock.v
+108
-0
108 additions, 0 deletions
theories/locks/lockspecs/atomic_lock.v
theories/locks/lockspecs/share_locks.v
+109
-0
109 additions, 0 deletions
theories/locks/lockspecs/share_locks.v
with
217 additions
and
0 deletions
theories/locks/lockspecs/atomic_lock.v
0 → 100644
+
108
−
0
View file @
3c9a2592
From
iris
.
proofmode
Require
Import
proofmode
.
From
iris
.
base_logic
.
lib
Require
Export
invariants
ghost_var
.
From
iris
.
bi
.
lib
Require
Import
fractional
.
From
iris
.
heap_lang
Require
Import
proofmode
primitive_laws
notation
atomic_heap
.
From
iris
.
prelude
Require
Import
options
.
(** Deallocatable lock with share, operations are atomic. *)
Structure
atomic_lock
`{
!
heapGS
Σ
}
:=
AtomicLock
{
(** * Operations *)
newlock
:
val
;
acquire
:
val
;
release
:
val
;
freelock
:
val
;
(** * Predicates *)
(** [name] is used to associate locked with [is_lock] *)
name
:
Type
;
(** No namespace [N] parameter because we only expose program specs, which
anyway have the full mask. *)
is_lock
(
f
:
Qp
)
(
γ
:
name
)
(
lock
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
;
locked
(
γ
:
name
)
:
iProp
Σ
;
(** * General properties of the predicates *)
is_lock_ne
f
γ
lk
:
Contractive
(
is_lock
f
γ
lk
);
is_lock_persistent
γ
lk
R
:
Fractional
(
fun
f
=>
is_lock
f
γ
lk
R
);
is_lock_iff
f
γ
lk
R1
R2
:
is_lock
f
γ
lk
R1
-∗
▷
□
(
R1
↔
R2
)
-∗
is_lock
f
γ
lk
R2
;
locked_timeless
γ
:
Timeless
(
locked
γ
);
locked_exclusive
γ
:
locked
γ
-∗
locked
γ
-∗
False
;
(** * Program specs *)
newlock_spec
(
R
:
iProp
Σ
)
:
{{{
R
}}}
newlock
#
()
{{{
lk
γ
,
RET
lk
;
is_lock
1
γ
lk
R
}}};
acquire_spec
f
γ
(
lk
:
val
)
R
:
⊢
<<
{
is_lock
f
γ
lk
R
}
>>
acquire
lk
@
∅
<<
{
is_lock
f
γ
lk
R
∗
locked
γ
∗
R
|
RET
#
()
}
>>
;
release_spec
f
γ
lk
R
:
{{{
is_lock
f
γ
lk
R
∗
locked
γ
∗
R
}}}
release
lk
{{{
RET
#
();
is_lock
f
γ
lk
R
}}};
freelock_spec
γ
lk
(
R
:
iProp
Σ
)
:
{{{
is_lock
1
γ
lk
R
∗
R
}}}
freelock
#
()
{{{
RET
#
();
R
}}}
}
.
Inductive
state
:=
Free
|
Locked
.
Class
lockG
Σ
:=
LockG
{
lock_tokG
:
ghost_varG
Σ
state
}
.
Local
Existing
Instance
lock_tokG
.
Definition
lockΣ
:
gFunctors
:=
#
[
ghost_varΣ
state
]
.
Global
Instance
subG_lockΣ
{
Σ
}
:
subG
lockΣ
Σ
→
lockG
Σ
.
Proof
.
solve_inG
.
Qed
.
Section
tada
.
Context
`{
!
heapGS
Σ
,
!
lockG
Σ
}
(
l
:
atomic_lock
)
.
Record
tada_lock_name
:=
TadaLockName
{
tada_lock_name_state
:
gname
;
tada_lock_name_lock
:
l
.(
name
);
}
.
Definition
tada_is_lock
(
γ
:
tada_lock_name
)
(
lk
:
val
)
:
iProp
Σ
:=
l
.(
is_lock
)
1
γ
.(
tada_lock_name_lock
)
lk
(
ghost_var
γ
.(
tada_lock_name_state
)
(
1
/
4
)
Free
)
.
Definition
tada_lock_state
(
γ
:
tada_lock_name
)
(
lk
:
val
)
(
s
:
state
)
:
iProp
Σ
:=
tada_is_lock
γ
lk
∗
ghost_var
γ
.(
tada_lock_name_state
)
(
3
/
4
)
s
∗
if
s
is
Locked
then
l
.(
locked
)
γ
.(
tada_lock_name_lock
)
∗
ghost_var
γ
.(
tada_lock_name_state
)
(
1
/
4
)
Locked
else
True
.
(* Global Instance tada_is_lock_persistent γ lk : Persistent (tada_is_lock γ lk).
Proof. apply _. Qed. *)
(* Global Instance tada_lock_state_timeless γ s : Timeless (tada_lock_state γ lk s).
Proof. destruct s; apply _. Qed.*)
Lemma
tada_lock_state_exclusive
γ
lk
s1
s2
:
tada_lock_state
γ
lk
s1
-∗
tada_lock_state
γ
lk
s2
-∗
False
.
Proof
.
iIntros
"[_ [Hvar1 _]] [_ [Hvar2 _]]"
.
iDestruct
(
ghost_var_valid_2
with
"Hvar1 Hvar2"
)
as
%
[
Hval
_]
.
exfalso
.
done
.
Qed
.
Lemma
newlock_tada_spec
:
{{{
True
}}}
l
.(
newlock
)
#
()
{{{
lk
γ
,
RET
lk
;
tada_lock_state
γ
lk
Free
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
iMod
(
ghost_var_alloc
Free
)
as
(
γvar
)
"Hvar"
.
rewrite
-
Qp
.
three_quarter_quarter
.
iDestruct
"Hvar"
as
"[Hvar1 Hvar2]"
.
wp_apply
(
l
.(
newlock_spec
)
with
"Hvar2"
)
.
iIntros
(
lk
γlock
)
"Hlock"
.
iApply
(
"HΦ"
$!
lk
(
TadaLockName
_
_))
.
iFrame
.
Qed
.
Lemma
acquire_tada_spec
γ
(
lk
:
val
)
:
⊢<<
{
∀
s
,
tada_lock_state
γ
lk
s
}
>>
l
.(
acquire
)
lk
@
∅
<<
{
tada_lock_state
γ
lk
Locked
|
RET
#
()
}
>>.
Proof
.
iIntros
"%Φ AU"
.
iApply
fupd_wp
.
Abort
.
Lemma
release_tada_spec
γ
(
lk
:
val
)
:
⊢<<
{
tada_lock_state
γ
lk
Locked
}
>>
l
.(
release
)
lk
@
∅
<<
{
tada_lock_state
γ
lk
Free
|
RET
#
()
}
>>.
Proof
.
Abort
.
End
tada
.
This diff is collapsed.
Click to expand it.
theories/locks/lockspecs/share_locks.v
0 → 100644
+
109
−
0
View file @
3c9a2592
From
iris
.
base_logic
.
lib
Require
Export
invariants
ghost_var
.
From
iris
.
bi
.
lib
Require
Import
fractional
.
From
iris
.
heap_lang
Require
Import
primitive_laws
notation
proofmode
atomic_heap
.
From
iris
.
prelude
Require
Import
options
.
(** Deallocatable lock with share. *)
Structure
lock
`{
!
heapGS
Σ
}
:=
Lock
{
(** * Operations *)
newlock
:
val
;
acquire
:
val
;
release
:
val
;
freelock
:
val
;
(** * Predicates *)
(** [name] is used to associate locked with [is_lock] *)
name
:
Type
;
(** No namespace [N] parameter because we only expose program specs, which
anyway have the full mask. *)
is_lock
(
f
:
Qp
)
(
γ
:
name
)
(
lock
:
val
)
(
R
:
iProp
Σ
)
:
iProp
Σ
;
locked
(
γ
:
name
)
:
iProp
Σ
;
(** * General properties of the predicates *)
is_lock_ne
f
γ
lk
:
Contractive
(
is_lock
f
γ
lk
);
is_lock_persistent
γ
lk
R
:
Fractional
(
fun
f
=>
is_lock
f
γ
lk
R
);
is_lock_iff
f
γ
lk
R1
R2
:
is_lock
f
γ
lk
R1
-∗
▷
□
(
R1
↔
R2
)
-∗
is_lock
f
γ
lk
R2
;
locked_timeless
γ
:
Timeless
(
locked
γ
);
locked_exclusive
γ
:
locked
γ
-∗
locked
γ
-∗
False
;
(** * Program specs *)
newlock_spec
(
R
:
iProp
Σ
)
:
{{{
R
}}}
newlock
#
()
{{{
lk
γ
,
RET
lk
;
is_lock
1
γ
lk
R
}}};
acquire_spec
f
γ
lk
R
:
{{{
is_lock
f
γ
lk
R
}}}
acquire
lk
{{{
RET
#
();
is_lock
f
γ
lk
R
∗
locked
γ
∗
R
}}};
release_spec
f
γ
lk
R
:
{{{
is_lock
f
γ
lk
R
∗
locked
γ
∗
R
}}}
release
lk
{{{
RET
#
();
is_lock
f
γ
lk
R
}}};
freelock_spec
γ
lk
(
R
:
iProp
Σ
)
:
{{{
is_lock
1
γ
lk
R
∗
R
}}}
freelock
#
()
{{{
RET
#
();
R
}}}
}
.
Inductive
state
:=
Free
|
Locked
.
Class
lockG
Σ
:=
LockG
{
lock_tokG
:
ghost_varG
Σ
state
}
.
Local
Existing
Instance
lock_tokG
.
Definition
lockΣ
:
gFunctors
:=
#
[
ghost_varΣ
state
]
.
Global
Instance
subG_lockΣ
{
Σ
}
:
subG
lockΣ
Σ
→
lockG
Σ
.
Proof
.
solve_inG
.
Qed
.
Section
tada
.
Context
`{
!
heapGS
Σ
,
!
lockG
Σ
}
(
l
:
lock
)
.
Record
tada_lock_name
:=
TadaLockName
{
tada_lock_name_state
:
gname
;
tada_lock_name_lock
:
l
.(
name
);
}
.
Definition
tada_is_lock
f
(
γ
:
tada_lock_name
)
(
lk
:
val
)
:
iProp
Σ
:=
l
.(
is_lock
)
f
γ
.(
tada_lock_name_lock
)
lk
(
ghost_var
γ
.(
tada_lock_name_state
)
(
1
/
4
)
Free
)
.
Definition
tada_lock_state
f
(
γ
:
tada_lock_name
)
(
lk
:
val
)
(
s
:
state
)
:
iProp
Σ
:=
tada_is_lock
f
γ
lk
∗
ghost_var
γ
.(
tada_lock_name_state
)
(
3
/
4
)
s
∗
if
s
is
Locked
then
l
.(
locked
)
γ
.(
tada_lock_name_lock
)
∗
ghost_var
γ
.(
tada_lock_name_state
)
(
1
/
4
)
Locked
else
True
.
Lemma
tada_lock_state_exclusive
f1
f2
γ
lk
s1
s2
:
tada_lock_state
f1
γ
lk
s1
-∗
tada_lock_state
f2
γ
lk
s2
-∗
False
.
Proof
.
iIntros
"[_ [Hvar1 _]] [_ [Hvar2 _]]"
.
iDestruct
(
ghost_var_valid_2
with
"Hvar1 Hvar2"
)
as
%
[
Hval
_]
.
exfalso
.
done
.
Qed
.
Lemma
newlock_tada_spec
:
{{{
True
}}}
l
.(
newlock
)
#
()
{{{
lk
γ
,
RET
lk
;
tada_lock_state
1
γ
lk
Free
}}}
.
Proof
.
iIntros
(
Φ
)
"_ HΦ"
.
iMod
(
ghost_var_alloc
Free
)
as
(
γvar
)
"Hvar"
.
rewrite
-
{
2
}
Qp
.
three_quarter_quarter
.
iDestruct
"Hvar"
as
"[Hvar1 Hvar2]"
.
wp_apply
(
l
.(
newlock_spec
)
with
"Hvar2"
)
.
iIntros
(
lk
γlock
)
"Hlock"
.
iApply
(
"HΦ"
$!
lk
(
TadaLockName
_
_))
.
iFrame
.
Qed
.
Lemma
acquire_tada_spec
f
γ
(
lk
:
val
)
:
⊢<<
{
∀
s
,
tada_lock_state
f
γ
lk
s
}
>>
l
.(
acquire
)
lk
@
∅
<<
{
tada_lock_state
f
γ
lk
Locked
|
RET
#
()
}
>>.
Proof
.
iIntros
"%Φ AU"
.
iApply
fupd_wp
.
iMod
"AU"
as
"[Hislock [Hclose _]]"
.
(* we have l.(is_lock), but have to return it before applying l.(acquire_spec) --
probably need the loan trick from freeable_logatom_lock *)
iMod
(
"Hclose"
with
"[$Hislock]"
)
as
"AU"
.
iModIntro
.
iApply
wp_fupd
.
wp_apply
(
l
.(
acquire_spec
))
.
(* iIntros "[Hlocked Hvar1]".
iMod "AU" as (s) "[[_ [Hvar2 _]] [_ Hclose]]".
iDestruct (ghost_var_agree with "Hvar1 Hvar2") as %<-.
iMod (ghost_var_update_2 Locked with "Hvar1 Hvar2") as "[Hvar1 Hvar2]".
{ admit. }
iMod ("Hclose" with "[$Hislock $Hvar2 $Hlocked $Hvar1]"). done.
Qed.*)
Abort
.
End
tada
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment