Skip to content
Snippets Groups Projects
Commit dbd58457 authored by Ralf Jung's avatar Ralf Jung
Browse files

relations lemmas

parent 653c819a
No related branches found
No related tags found
No related merge requests found
......@@ -225,6 +225,13 @@ Section general.
Lemma tc_rtc x y : tc R x y rtc R x y.
Proof. induction 1; eauto. Qed.
Lemma red_tc x : red (tc R) x red R x.
Proof.
split.
- intros [y []]; eexists; eauto.
- intros [y HR]. exists y. by apply tc_once.
Qed.
Lemma tc_congruence {B} (f : A B) (R' : relation B) x y :
( x y, R x y R' (f x) (f y)) tc R x y tc R' (f x) (f y).
Proof. induction 2; econstructor; by eauto. Qed.
......@@ -344,6 +351,12 @@ Section general.
- intros (l&?&?&?&?). exists (pred (length l)).
split; [lia|]. apply nsteps_list. exists l. eauto with lia.
Qed.
Lemma ex_loop_inv x :
ex_loop R x
x', R x x' ex_loop R x'.
Proof. inversion 1; eauto. Qed.
End general.
Section more_general.
......@@ -366,6 +379,21 @@ Section more_general.
( x y, R x y R' (f x) (f y)) rtsc R x y rtsc R' (f x) (f y).
Proof. unfold rtsc; eauto using rtc_congruence, sc_congruence. Qed.
Lemma ex_loop_tc x :
ex_loop (tc R) x ex_loop R x.
Proof.
split.
- revert x; cofix IH.
intros x (y & Hstep & Hloop')%ex_loop_inv.
destruct Hstep as [x y Hstep|x y z Hstep Hsteps].
+ econstructor; eauto.
+ econstructor; [by eauto|].
eapply IH. econstructor; eauto.
- revert x; cofix IH.
intros x (y & Hstep & Hloop')%ex_loop_inv.
econstructor; eauto using tc_once.
Qed.
End more_general.
Section properties.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment