Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
fbd0f2b1
Commit
fbd0f2b1
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
unicodify heap_lang
parent
c02ea520
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
barrier/heap_lang.v
+20
-20
20 additions, 20 deletions
barrier/heap_lang.v
with
20 additions
and
20 deletions
barrier/heap_lang.v
+
20
−
20
View file @
fbd0f2b1
...
@@ -30,8 +30,8 @@ Inductive expr :=
...
@@ -30,8 +30,8 @@ Inductive expr :=
|
App
(
e1
e2
:
expr
)
|
App
(
e1
e2
:
expr
)
(* Embedding of Coq values and operations *)
(* Embedding of Coq values and operations *)
|
Lit
{
T
:
Type
}
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
Lit
{
T
:
Type
}
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
Op1
{
T1
To
:
Type
}
(
f
:
T1
->
To
)
(
e1
:
expr
)
|
Op1
{
T1
To
:
Type
}
(
f
:
T1
→
To
)
(
e1
:
expr
)
|
Op2
{
T1
T2
To
:
Type
}
(
f
:
T1
->
T2
->
To
)
(
e1
:
expr
)
(
e2
:
expr
)
|
Op2
{
T1
T2
To
:
Type
}
(
f
:
T1
→
T2
→
To
)
(
e1
:
expr
)
(
e2
:
expr
)
(* Products *)
(* Products *)
|
Pair
(
e1
e2
:
expr
)
|
Pair
(
e1
e2
:
expr
)
|
Fst
(
e
:
expr
)
|
Fst
(
e
:
expr
)
...
@@ -106,7 +106,7 @@ Qed.
...
@@ -106,7 +106,7 @@ Qed.
Section
e2e
.
(* To get local tactics. *)
Section
e2e
.
(* To get local tactics. *)
Lemma
e2e
e
v
:
Lemma
e2e
e
v
:
e2v
e
=
Some
v
->
v2e
v
=
e
.
e2v
e
=
Some
v
→
v2e
v
=
e
.
Proof
.
Proof
.
Ltac
case0
:=
case
=>
<-
;
simpl
;
eauto
using
f_equal
,
f_equal2
.
Ltac
case0
:=
case
=>
<-
;
simpl
;
eauto
using
f_equal
,
f_equal2
.
Ltac
case1
e1
:=
destruct
(
e2v
e1
);
simpl
;
[|
discriminate
];
Ltac
case1
e1
:=
destruct
(
e2v
e1
);
simpl
;
[|
discriminate
];
...
@@ -121,7 +121,7 @@ Qed.
...
@@ -121,7 +121,7 @@ Qed.
End
e2e
.
End
e2e
.
Lemma
v2e_inj
v1
v2
:
Lemma
v2e_inj
v1
v2
:
v2e
v1
=
v2e
v2
->
v1
=
v2
.
v2e
v1
=
v2e
v2
→
v1
=
v2
.
Proof
.
Proof
.
revert
v2
;
induction
v1
=>
v2
;
destruct
v2
;
simpl
;
try
discriminate
;
revert
v2
;
induction
v1
=>
v2
;
destruct
v2
;
simpl
;
try
discriminate
;
first
[
case_depeq1
|
case
];
eauto
using
f_equal
,
f_equal2
.
first
[
case_depeq1
|
case
];
eauto
using
f_equal
,
f_equal2
.
...
@@ -215,27 +215,27 @@ Proof.
...
@@ -215,27 +215,27 @@ Proof.
Qed
.
Qed
.
Lemma
fill_inj_r
K
e1
e2
:
Lemma
fill_inj_r
K
e1
e2
:
fill
K
e1
=
fill
K
e2
->
e1
=
e2
.
fill
K
e1
=
fill
K
e2
→
e1
=
e2
.
Proof
.
Proof
.
revert
e1
e2
;
induction
K
=>
el
er
/=
;
revert
e1
e2
;
induction
K
=>
el
er
/=
;
(
move
=>
<-
;
reflexivity
)
||
(
case
=>
/
IHK
<-
;
reflexivity
)
.
(
move
=>
<-
;
reflexivity
)
||
(
case
=>
/
IHK
<-
;
reflexivity
)
.
Qed
.
Qed
.
Lemma
fill_value
K
e
v'
:
Lemma
fill_value
K
e
v'
:
e2v
(
fill
K
e
)
=
Some
v'
->
is_Some
(
e2v
e
)
.
e2v
(
fill
K
e
)
=
Some
v'
→
is_Some
(
e2v
e
)
.
Proof
.
Proof
.
revert
v'
;
induction
K
=>
v'
/=
;
try
discriminate
;
revert
v'
;
induction
K
=>
v'
/=
;
try
discriminate
;
try
destruct
(
e2v
(
fill
K
e
));
rewrite
?v2v
;
eauto
.
try
destruct
(
e2v
(
fill
K
e
));
rewrite
?v2v
;
eauto
.
Qed
.
Qed
.
Lemma
fill_not_value
e
K
:
Lemma
fill_not_value
e
K
:
e2v
e
=
None
->
e2v
(
fill
K
e
)
=
None
.
e2v
e
=
None
→
e2v
(
fill
K
e
)
=
None
.
Proof
.
Proof
.
intros
Hnval
.
induction
K
=>
/=
;
by
rewrite
?v2v
/=
?IHK
/=.
intros
Hnval
.
induction
K
=>
/=
;
by
rewrite
?v2v
/=
?IHK
/=.
Qed
.
Qed
.
Lemma
fill_not_value2
e
K
v
:
Lemma
fill_not_value2
e
K
v
:
e2v
e
=
None
->
e2v
(
fill
K
e
)
=
Some
v
->
False
.
e2v
e
=
None
→
e2v
(
fill
K
e
)
=
Some
v
->
False
.
Proof
.
Proof
.
intros
Hnval
Hval
.
erewrite
fill_not_value
in
Hval
by
assumption
.
discriminate
.
intros
Hnval
Hval
.
erewrite
fill_not_value
in
Hval
by
assumption
.
discriminate
.
Qed
.
Qed
.
...
@@ -309,10 +309,10 @@ Section step_by_value.
...
@@ -309,10 +309,10 @@ Section step_by_value.
sub-context of K' - in other words, e also contains the reducible
sub-context of K' - in other words, e also contains the reducible
expression *)
expression *)
Lemma
step_by_value
{
K
K'
e
e'
σ
}
:
Lemma
step_by_value
{
K
K'
e
e'
σ
}
:
fill
K
e
=
fill
K'
e'
->
fill
K
e
=
fill
K'
e'
→
reducible
e'
σ
->
reducible
e'
σ
→
e2v
e
=
None
->
e2v
e
=
None
→
exists
K''
,
K'
=
comp_ctx
K
K''
.
∃
K''
,
K'
=
comp_ctx
K
K''
.
Proof
.
Proof
.
Ltac
bad_fill
:=
intros
;
exfalso
;
subst
;
Ltac
bad_fill
:=
intros
;
exfalso
;
subst
;
(
eapply
values_stuck
;
eassumption
)
||
(
eapply
values_stuck
;
eassumption
)
||
...
@@ -375,8 +375,8 @@ Definition atomic (e: expr) :=
...
@@ -375,8 +375,8 @@ Definition atomic (e: expr) :=
match
e
with
match
e
with
|
Alloc
e
=>
is_Some
(
e2v
e
)
|
Alloc
e
=>
is_Some
(
e2v
e
)
|
Load
e
=>
is_Some
(
e2v
e
)
|
Load
e
=>
is_Some
(
e2v
e
)
|
Store
e1
e2
=>
is_Some
(
e2v
e1
)
/\
is_Some
(
e2v
e2
)
|
Store
e1
e2
=>
is_Some
(
e2v
e1
)
∧
is_Some
(
e2v
e2
)
|
Cas
e0
e1
e2
=>
is_Some
(
e2v
e0
)
/\
is_Some
(
e2v
e1
)
/\
is_Some
(
e2v
e2
)
|
Cas
e0
e1
e2
=>
is_Some
(
e2v
e0
)
∧
is_Some
(
e2v
e1
)
∧
is_Some
(
e2v
e2
)
|
_
=>
False
|
_
=>
False
end
.
end
.
...
@@ -387,8 +387,8 @@ Proof.
...
@@ -387,8 +387,8 @@ Proof.
Qed
.
Qed
.
Lemma
atomic_step
e1
σ1
e2
σ2
ef
:
Lemma
atomic_step
e1
σ1
e2
σ2
ef
:
atomic
e1
->
atomic
e1
→
prim_step
e1
σ1
e2
σ2
ef
->
prim_step
e1
σ1
e2
σ2
ef
→
is_Some
(
e2v
e2
)
.
is_Some
(
e2v
e2
)
.
Proof
.
Proof
.
destruct
e1
;
simpl
;
intros
Hatomic
Hstep
;
inversion
Hstep
;
destruct
e1
;
simpl
;
intros
Hatomic
Hstep
;
inversion
Hstep
;
...
@@ -397,8 +397,8 @@ Qed.
...
@@ -397,8 +397,8 @@ Qed.
(* Atomics must not contain evaluation positions. *)
(* Atomics must not contain evaluation positions. *)
Lemma
atomic_fill
e
K
:
Lemma
atomic_fill
e
K
:
atomic
(
fill
K
e
)
->
atomic
(
fill
K
e
)
→
e2v
e
=
None
->
e2v
e
=
None
→
K
=
EmptyCtx
.
K
=
EmptyCtx
.
Proof
.
Proof
.
destruct
K
;
simpl
;
first
reflexivity
;
unfold
is_Some
;
intros
Hatomic
Hnval
;
destruct
K
;
simpl
;
first
reflexivity
;
unfold
is_Some
;
intros
Hatomic
Hnval
;
...
@@ -412,8 +412,8 @@ Qed.
...
@@ -412,8 +412,8 @@ Qed.
Section
Language
.
Section
Language
.
Definition
ectx_step
e1
σ1
e2
σ2
(
ef
:
option
expr
)
:=
Definition
ectx_step
e1
σ1
e2
σ2
(
ef
:
option
expr
)
:=
exists
K
e1'
e2'
,
e1
=
fill
K
e1'
/\
e2
=
fill
K
e2'
/\
∃
K
e1'
e2'
,
e1
=
fill
K
e1'
∧
e2
=
fill
K
e2'
∧
prim_step
e1'
σ1
e2'
σ2
ef
.
prim_step
e1'
σ1
e2'
σ2
ef
.
Global
Program
Instance
heap_lang
:
Language
expr
value
state
:=
{|
Global
Program
Instance
heap_lang
:
Language
expr
value
state
:=
{|
of_val
:=
v2e
;
of_val
:=
v2e
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment