Skip to content
Snippets Groups Projects
Commit d7cae999 authored by Ralf Jung's avatar Ralf Jung
Browse files

docs: update iris.sty

parent 21ad2d96
No related branches found
No related tags found
No related merge requests found
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
Given some COFE $\cofe$, we define $\agm(\cofe)$ as follows: Given some COFE $\cofe$, we define $\agm(\cofe)$ as follows:
\begin{align*} \begin{align*}
\monoid \eqdef{}& \setComp{(c, V) \subseteq (\mathbb{N} \to T) \times \mathbb{N}}{ \All n, m. n \geq m \Ra n \in V \Ra m \in V } \\ \monoid \eqdef{}& \setComp{(c, V) \in (\mathbb{N} \to T) \times \pset{\mathbb{N}}}{ \All n, m. n \geq m \Ra n \in V \Ra m \in V } \\
& \text{quotiented by} \\ & \text{quotiented by} \\
(c_1, V_1) \equiv (c_1, V_2) \eqdef{}& V_1 = V_2 \land \All n. n \in V_1 \Ra c_1(n) \nequiv{n} c_2(n) \\ (c_1, V_1) \equiv (c_1, V_2) \eqdef{}& V_1 = V_2 \land \All n. n \in V_1 \Ra c_1(n) \nequiv{n} c_2(n) \\
(c_1, V_1) \nequiv{n} (c_1, V_2) \eqdef{}& (\All m \leq n. m \in V_1 \Lra m \in V_2) \land (\All m \leq n. m \in V_1 \Ra c_1(m) \nequiv{m} c_2(m)) \\ (c_1, V_1) \nequiv{n} (c_1, V_2) \eqdef{}& (\All m \leq n. m \in V_1 \Lra m \in V_2) \land (\All m \leq n. m \in V_1 \Ra c_1(m) \nequiv{m} c_2(m)) \\
......
...@@ -106,10 +106,12 @@ ...@@ -106,10 +106,12 @@
%% Some commonly used identifiers %% Some commonly used identifiers
\newcommand{\SProp}{\textdom{SProp}}
\newcommand{\UPred}{\textdom{UPred}} \newcommand{\UPred}{\textdom{UPred}}
\newcommand{\mProp}{\textdom{Prop}} % meta-level prop \newcommand{\mProp}{\textdom{Prop}} % meta-level prop
\newcommand{\iProp}{\textdom{iProp}} \newcommand{\iProp}{\textdom{iProp}}
\newcommand{\Wld}{\textdom{Wld}} \newcommand{\Wld}{\textdom{Wld}}
\newcommand{\Res}{\textdom{Res}}
\newcommand{\cofe}{T} \newcommand{\cofe}{T}
\newcommand{\cofeB}{U} \newcommand{\cofeB}{U}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment