Skip to content
Snippets Groups Projects
Commit d69ec6c4 authored by Ralf Jung's avatar Ralf Jung
Browse files

make sealing naming consistent

parent e7667215
No related branches found
No related tags found
No related merge requests found
......@@ -27,11 +27,11 @@ Definition heap_mapsto_def `{heapG Σ} (l : loc) (v: val) : iPropG heap_lang Σ
(* Perform sealing *)
Module Type HeapMapstoSig.
Parameter heap_mapsto : `{heapG Σ} (l : loc) (v: val), iPropG heap_lang Σ.
Axiom heap_mapsto_def : @heap_mapsto = @heap_mapsto_def.
Axiom heap_mapsto_eq : @heap_mapsto = @heap_mapsto_def.
End HeapMapstoSig.
Module Export HeapMapsto : HeapMapstoSig.
Definition heap_mapsto := @heap_mapsto_def.
Definition heap_mapsto_def := Logic.eq_refl (@heap_mapsto).
Definition heap_mapsto_eq := Logic.eq_refl (@heap_mapsto).
End HeapMapsto.
Definition heap_inv `{i : heapG Σ} (h : heapRA) : iPropG heap_lang Σ :=
......@@ -80,8 +80,7 @@ Section heap.
authG heap_lang Σ heapRA nclose N E
ownP σ (|={E}=> _ : heapG Σ, heap_ctx N Π{map σ} heap_mapsto).
Proof.
rewrite heap_mapsto_def.
intros. rewrite -{1}(from_to_heap σ). etrans.
intros. rewrite heap_mapsto_eq -{1}(from_to_heap σ). etrans.
{ rewrite [ownP _]later_intro.
apply (auth_alloc (ownP of_heap) E N (to_heap σ)); last done.
apply to_heap_valid. }
......@@ -104,8 +103,7 @@ Section heap.
(** General properties of mapsto *)
Lemma heap_mapsto_disjoint l v1 v2 : (l v1 l v2)%I False.
Proof.
rewrite heap_mapsto_def.
rewrite -auto_own_op auto_own_valid map_op_singleton.
rewrite heap_mapsto_eq -auto_own_op auto_own_valid map_op_singleton.
rewrite map_validI (forall_elim l) lookup_singleton.
by rewrite option_validI excl_validI.
Qed.
......@@ -117,7 +115,7 @@ Section heap.
P ( l, l v -★ Φ (LocV l))
P || Alloc e @ E {{ Φ }}.
Proof.
rewrite /heap_ctx /heap_inv heap_mapsto_def=> ?? Hctx HP.
rewrite /heap_ctx /heap_inv heap_mapsto_eq=> ?? Hctx HP.
trans (|={E}=> auth_own heap_name P)%I.
{ by rewrite -pvs_frame_r -(auth_empty _ E) left_id. }
apply wp_strip_pvs, (auth_fsa heap_inv (wp_fsa (Alloc e)))
......@@ -143,7 +141,7 @@ Section heap.
P ( l v (l v -★ Φ v))
P || Load (Loc l) @ E {{ Φ }}.
Proof.
rewrite /heap_ctx /heap_inv heap_mapsto_def=>HN ? HPΦ.
rewrite /heap_ctx /heap_inv heap_mapsto_eq=>HN ? HPΦ.
apply (auth_fsa' heap_inv (wp_fsa _) id)
with N heap_name {[ l := Excl v ]}; simpl; eauto with I.
rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
......@@ -161,7 +159,7 @@ Section heap.
P ( l v' (l v -★ Φ (LitV LitUnit)))
P || Store (Loc l) e @ E {{ Φ }}.
Proof.
rewrite /heap_ctx /heap_inv heap_mapsto_def=>? HN ? HPΦ.
rewrite /heap_ctx /heap_inv heap_mapsto_eq=>? HN ? HPΦ.
apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v) l))
with N heap_name {[ l := Excl v' ]}; simpl; eauto with I.
rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
......@@ -181,7 +179,7 @@ Section heap.
P ( l v' (l v' -★ Φ (LitV (LitBool false))))
P || Cas (Loc l) e1 e2 @ E {{ Φ }}.
Proof.
rewrite /heap_ctx /heap_inv heap_mapsto_def=>??? HN ? HPΦ.
rewrite /heap_ctx /heap_inv heap_mapsto_eq=>??? HN ? HPΦ.
apply (auth_fsa' heap_inv (wp_fsa _) id)
with N heap_name {[ l := Excl v' ]}; simpl; eauto 10 with I.
rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
......@@ -200,7 +198,7 @@ Section heap.
P ( l v1 (l v2 -★ Φ (LitV (LitBool true))))
P || Cas (Loc l) e1 e2 @ E {{ Φ }}.
Proof.
rewrite /heap_ctx /heap_inv heap_mapsto_def=> ?? HN ? HPΦ.
rewrite /heap_ctx /heap_inv heap_mapsto_eq=> ?? HN ? HPΦ.
apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v2) l))
with N heap_name {[ l := Excl v1 ]}; simpl; eauto 10 with I.
rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
......
......@@ -15,11 +15,11 @@ Definition saved_prop_own_def `{savedPropG Λ Σ}
Module Type SavedPropOwnSig.
Parameter saved_prop_own : `{savedPropG Λ Σ} (γ : gname) (P : iPropG Λ Σ),
iPropG Λ Σ.
Axiom saved_prop_own_def : @saved_prop_own = @saved_prop_own_def.
Axiom saved_prop_own_eq : @saved_prop_own = @saved_prop_own_def.
End SavedPropOwnSig.
Module Export SavedPropOwn : SavedPropOwnSig.
Definition saved_prop_own := @saved_prop_own_def.
Definition saved_prop_own_def := Logic.eq_refl (@saved_prop_own).
Definition saved_prop_own_eq := Logic.eq_refl (@saved_prop_own).
End SavedPropOwn.
Instance: Params (@saved_prop_own) 4.
......@@ -30,20 +30,20 @@ Section saved_prop.
Global Instance saved_prop_always_stable γ P :
AlwaysStable (saved_prop_own γ P).
Proof. by rewrite /AlwaysStable saved_prop_own_def always_own. Qed.
Proof. by rewrite /AlwaysStable saved_prop_own_eq always_own. Qed.
Lemma saved_prop_alloc_strong N P (G : gset gname) :
True pvs N N ( γ, (γ G) saved_prop_own γ P).
Proof. by rewrite saved_prop_own_def; apply own_alloc_strong. Qed.
Proof. by rewrite saved_prop_own_eq; apply own_alloc_strong. Qed.
Lemma saved_prop_alloc N P :
True pvs N N ( γ, saved_prop_own γ P).
Proof. by rewrite saved_prop_own_def; apply own_alloc. Qed.
Proof. by rewrite saved_prop_own_eq; apply own_alloc. Qed.
Lemma saved_prop_agree γ P Q :
(saved_prop_own γ P saved_prop_own γ Q) (P Q).
Proof.
rewrite saved_prop_own_def -own_op own_valid agree_validI.
rewrite saved_prop_own_eq -own_op own_valid agree_validI.
rewrite agree_equivI later_equivI /=; apply later_mono.
rewrite -{2}(iProp_fold_unfold P) -{2}(iProp_fold_unfold Q).
apply (eq_rewrite (iProp_unfold P) (iProp_unfold Q) (λ Q' : iPreProp Λ _,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment