Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
d011f232
Commit
d011f232
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Valid STS elements should be non-empty.
parent
4847b5c1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/sts.v
+46
-28
46 additions, 28 deletions
iris/sts.v
with
46 additions
and
28 deletions
iris/sts.v
+
46
−
28
View file @
d011f232
...
...
@@ -29,6 +29,7 @@ Inductive frame_step (T : set B) (s1 s2 : A) : Prop :=
T1
∩
(
tok
s1
∪
T
)
≡
∅
→
step
(
s1
,
T1
)
(
s2
,
T2
)
→
frame_step
T
s1
s2
.
Hint
Resolve
Frame_step
.
Record
closed
(
T
:
set
B
)
(
S
:
set
A
)
:
Prop
:=
Closed
{
closed_ne
:
S
≢
∅
;
closed_disjoint
s
:
s
∈
S
→
tok
s
∩
T
≡
∅
;
closed_step
s1
s2
:
s1
∈
S
→
frame_step
T
s1
s2
→
s2
∈
S
}
.
...
...
@@ -44,7 +45,8 @@ Global Instance sts_unit : Unit (t R tok) := λ x,
|
frag
S'
_
=>
frag
(
up_set
∅
S'
)
∅
|
auth
s
_
=>
frag
(
up
∅
s
)
∅
end
.
Inductive
sts_disjoint
:
Disjoint
(
t
R
tok
)
:=
|
frag_frag_disjoint
S1
S2
T1
T2
:
T1
∩
T2
≡
∅
→
frag
S1
T1
⊥
frag
S2
T2
|
frag_frag_disjoint
S1
S2
T1
T2
:
S1
∩
S2
≢
∅
→
T1
∩
T2
≡
∅
→
frag
S1
T1
⊥
frag
S2
T2
|
auth_frag_disjoint
s
S
T1
T2
:
s
∈
S
→
T1
∩
T2
≡
∅
→
auth
s
T1
⊥
frag
S
T2
|
frag_auth_disjoint
s
S
T1
T2
:
s
∈
S
→
T1
∩
T2
≡
∅
→
frag
S
T1
⊥
auth
s
T2
.
Global
Existing
Instance
sts_disjoint
.
...
...
@@ -64,6 +66,7 @@ Global Instance sts_minus : Minus (t R tok) := λ x1 x2,
end
.
Hint
Extern
10
(
equiv
(
A
:=
set
_)
_
_)
=>
esolve_elem_of
:
sts
.
Hint
Extern
10
(
¬
(
equiv
(
A
:=
set
_)
_
_))
=>
esolve_elem_of
:
sts
.
Hint
Extern
10
(_
∈
_)
=>
esolve_elem_of
:
sts
.
Hint
Extern
10
(_
⊆
_)
=>
esolve_elem_of
:
sts
.
Instance
:
Equivalence
((
≡
)
:
relation
(
t
R
tok
))
.
...
...
@@ -83,16 +86,14 @@ Qed.
Instance
closed_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
iff
)
closed
.
Proof
.
by
split
;
apply
closed_proper'
.
Qed
.
Lemma
closed_op
T1
T2
S1
S2
:
closed
T1
S1
→
closed
T2
S2
→
T1
∩
T2
≡
∅
→
closed
(
T1
∪
T2
)
(
S1
∩
S2
)
.
closed
T1
S1
→
closed
T2
S2
→
T1
∩
T2
≡
∅
→
S1
∩
S2
≢
∅
→
closed
(
T1
∪
T2
)
(
S1
∩
S2
)
.
Proof
.
intros
[?
Hstep1
]
[?
Hstep2
]
?;
split
;
[
esolve_elem_of
|]
.
intros
s3
s4
;
rewrite
!
elem_of_intersection
;
intros
[??]
[
T
?
?];
split
.
*
apply
Hstep1
with
s3
;
e
auto
with
sts
.
*
apply
Hstep2
with
s3
;
e
auto
with
sts
.
intros
[
_
?
Hstep1
]
[
_
?
Hstep2
]
?;
split
;
[
done
|
esolve_elem_of
|]
.
intros
s3
s4
;
rewrite
!
elem_of_intersection
;
intros
[??]
[
T
3
T4
?];
split
.
*
apply
Hstep1
with
s3
,
Frame_step
with
T3
T4
;
auto
with
sts
.
*
apply
Hstep2
with
s3
,
Frame_step
with
T3
T4
;
auto
with
sts
.
Qed
.
Lemma
closed_all
:
closed
∅
set_all
.
Proof
.
split
;
auto
with
sts
.
Qed
.
Hint
Resolve
closed_all
:
sts
.
Instance
up_preserving
:
Proper
(
flip
(
⊆
)
==>
(
=
)
==>
(
⊆
))
up
.
Proof
.
intros
T
T'
HT
s
?
<-
;
apply
elem_of_subseteq
.
...
...
@@ -105,30 +106,32 @@ Instance up_set_proper : Proper ((≡) ==> (≡) ==> (≡)) up_set.
Proof
.
by
intros
T1
T2
HT
S1
S2
HS
;
unfold
up_set
;
rewrite
HS
,
HT
.
Qed
.
Lemma
elem_of_up
s
T
:
s
∈
up
T
s
.
Proof
.
constructor
.
Qed
.
Lemma
suseteq_up_set
S
T
:
S
⊆
up_set
T
S
.
Lemma
su
b
seteq_up_set
S
T
:
S
⊆
up_set
T
S
.
Proof
.
intros
s
?;
apply
elem_of_bind
;
eauto
using
elem_of_up
.
Qed
.
Lemma
closed_up_set
S
T
:
(
∀
s
,
s
∈
S
→
tok
s
∩
T
≡
∅
)
→
closed
T
(
up_set
T
S
)
.
Lemma
closed_up_set
S
T
:
(
∀
s
,
s
∈
S
→
tok
s
∩
T
≡
∅
)
→
S
≢
∅
→
closed
T
(
up_set
T
S
)
.
Proof
.
intros
HS
;
unfold
up_set
;
split
.
intros
HS
Hne
;
unfold
up_set
;
split
.
*
assert
(
∀
s
,
s
∈
up
T
s
)
by
eauto
using
elem_of_up
.
esolve_elem_of
.
*
intros
s
;
rewrite
!
elem_of_bind
;
intros
(
s'
&
Hstep
&
Hs'
)
.
specialize
(
HS
s'
Hs'
);
clear
Hs'
S
.
specialize
(
HS
s'
Hs'
);
clear
Hs'
Hne
S
.
induction
Hstep
as
[
s
|
s1
s2
s3
[
T1
T2
?
Hstep
]
?
IH
];
auto
.
inversion_clear
Hstep
;
apply
IH
;
clear
IH
;
auto
with
sts
.
*
intros
s1
s2
;
rewrite
!
elem_of_bind
;
intros
(
s
&
?
&
?)
?;
exists
s
.
split
;
[
eapply
rtc_r
|];
eauto
.
Qed
.
Lemma
closed_up_set_empty
S
:
closed
∅
(
up_set
∅
S
)
.
Lemma
closed_up_set_empty
S
:
S
≢
∅
→
closed
∅
(
up_set
∅
S
)
.
Proof
.
eauto
using
closed_up_set
with
sts
.
Qed
.
Lemma
closed_up
s
T
:
tok
s
∩
T
≡
∅
→
closed
T
(
up
T
s
)
.
Proof
.
intros
;
rewrite
<-
(
collection_bind_singleton
(
up
T
)
s
)
.
apply
closed_up_set
;
auto
with
sts
.
apply
closed_up_set
;
esolve_elem_of
.
Qed
.
Lemma
closed_up_empty
s
:
closed
∅
(
up
∅
s
)
.
Proof
.
eauto
using
closed_up
with
sts
.
Qed
.
Lemma
up_closed
S
T
:
closed
T
S
→
up_set
T
S
≡
S
.
Proof
.
intros
;
split
;
auto
using
suseteq_up_set
;
intros
s
.
intros
;
split
;
auto
using
su
b
seteq_up_set
;
intros
s
.
unfold
up_set
;
rewrite
elem_of_bind
;
intros
(
s'
&
Hstep
&
?)
.
induction
Hstep
;
eauto
using
closed_step
.
Qed
.
...
...
@@ -144,7 +147,7 @@ Proof.
closed
T
S
→
s
∈
S
→
tok
s
∩
T'
≡
∅
→
tok
s
∩
(
T
∪
T'
)
≡
∅
)
.
{
intros
S
T
T'
s
[??];
esolve_elem_of
.
}
destruct
3
;
simpl
in
*
;
auto
using
closed_op
with
sts
.
*
intros
[];
simpl
;
eauto
using
closed_up
,
closed_up_set
with
sts
.
*
intros
[];
simpl
;
eauto
using
closed_up
,
closed_up_set
,
closed_ne
with
sts
.
*
intros
????
(
z
&
Hy
&
?
&
Hxz
);
destruct
Hxz
;
inversion
Hy
;
clear
Hy
;
setoid_subst
;
rewrite
?disjoint_union_difference
;
auto
using
closed_up
with
sts
.
eapply
closed_up_set
;
eauto
2
using
closed_disjoint
with
sts
.
...
...
@@ -153,22 +156,37 @@ Proof.
*
destruct
4
;
inversion_clear
1
;
constructor
;
auto
with
sts
.
*
destruct
1
;
constructor
;
auto
with
sts
.
*
destruct
3
;
constructor
;
auto
with
sts
.
*
intros
[];
constructor
;
auto
using
elem_of_up
with
sts
.
*
intros
[|
S
T
];
constructor
;
auto
using
elem_of_up
with
sts
.
assert
(
S
⊆
up_set
∅
S
∧
S
≢
∅
)
by
eauto
using
subseteq_up_set
,
closed_ne
.
esolve_elem_of
.
*
intros
[|
S
T
];
constructor
;
auto
with
sts
.
assert
(
S
⊆
up_set
∅
S
);
auto
using
suseteq_up_set
with
sts
.
assert
(
S
⊆
up_set
∅
S
);
auto
using
su
b
seteq_up_set
with
sts
.
*
intros
[
s
T
|
S
T
];
constructor
;
auto
with
sts
.
+
by
rewrite
(
up_closed
(
up
_
_))
by
auto
using
closed_up
with
sts
.
+
by
rewrite
(
up_closed
(
up_set
_
_))
by
auto
using
closed_up_set
with
sts
.
*
intros
x
y
??
(
z
&
Hy
&
?
&
Hxz
);
exists
(
unit
(
x
⋅
y
))
.
destruct
Hxz
;
inversion_clear
Hy
;
simpl
;
split_ands
;
auto
using
closed_up_set_empty
,
closed_up_empty
;
constructor
;
unfold
up_set
;
auto
with
sts
.
*
intros
x
y
??
(
z
&
Hy
&
_
&
Hxz
);
destruct
Hxz
;
inversion_clear
Hy
;
constructor
;
eauto
using
elem_of_up
;
auto
with
sts
.
+
by
rewrite
(
up_closed
(
up_set
_
_))
by
eauto
using
closed_up_set
,
closed_ne
with
sts
.
*
intros
x
y
??
(
z
&
Hy
&
?
&
Hxz
);
exists
(
unit
(
x
⋅
y
));
split_ands
.
+
destruct
Hxz
;
inversion_clear
Hy
;
constructor
;
unfold
up_set
;
esolve_elem_of
.
+
destruct
Hxz
;
inversion_clear
Hy
;
simpl
;
auto
using
closed_up_set_empty
,
closed_up_empty
with
sts
.
+
destruct
Hxz
;
inversion_clear
Hy
;
constructor
;
repeat
match
goal
with
|
|
-
context
[
up_set
?T
?S
]
=>
unless
(
S
⊆
up_set
T
S
)
by
done
;
pose
proof
(
subseteq_up_set
S
T
)
|
|
-
context
[
up
?T
?s
]
=>
unless
(
s
∈
up
T
s
)
by
done
;
pose
proof
(
elem_of_up
s
T
)
end
;
auto
with
sts
.
*
intros
x
y
??
(
z
&
Hy
&
_
&
Hxz
);
destruct
Hxz
;
inversion_clear
Hy
;
constructor
;
repeat
match
goal
with
|
|
-
context
[
up_set
?T
?S
]
=>
unless
(
S
⊆
up_set
T
S
)
by
done
;
pose
proof
(
subseteq_up_set
S
T
)
|
|
-
context
[
up
?T
?s
]
=>
unless
(
s
∈
up
T
s
)
by
done
;
pose
proof
(
elem_of_up
s
T
)
end
;
auto
with
sts
.
*
intros
x
y
??
(
z
&
Hy
&
?
&
Hxz
);
destruct
Hxz
as
[
S1
S2
T1
T2
|
|];
inversion
Hy
;
clear
Hy
;
constructor
;
setoid_subst
;
rewrite
?disjoint_union_difference
by
done
;
auto
.
split
;
[|
apply
intersection_greatest
;
auto
using
suseteq_up_set
with
sts
]
.
split
;
[|
apply
intersection_greatest
;
auto
using
su
b
seteq_up_set
with
sts
]
.
apply
intersection_greatest
;
[
auto
with
sts
|]
.
intros
s2
;
rewrite
elem_of_intersection
.
unfold
up_set
;
rewrite
elem_of_bind
;
intros
(?
&
s1
&
?
&
?
&
?)
.
...
...
@@ -178,7 +196,7 @@ Lemma step_closed s1 s2 T1 T2 S Tf :
step
(
s1
,
T1
)
(
s2
,
T2
)
→
closed
Tf
S
→
s1
∈
S
→
T1
∩
Tf
≡
∅
→
s2
∈
S
∧
T2
∩
Tf
≡
∅
∧
tok
s2
∩
T2
≡
∅.
Proof
.
inversion_clear
1
as
[????
HR
Hs1
Hs2
];
intros
[?
Hstep
]
??;
split_ands
;
auto
.
inversion_clear
1
as
[????
HR
Hs1
Hs2
];
intros
[?
?
Hstep
]??;
split_ands
;
auto
.
*
eapply
Hstep
with
s1
,
Frame_step
with
T1
T2
;
auto
with
sts
.
*
clear
Hstep
Hs1
Hs2
;
esolve_elem_of
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment