Skip to content
Snippets Groups Projects
Commit 62e935b6 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Define `MaybeIntoLaterNEnvs` in terms of the new classes.

parent fbea3aa1
No related branches found
No related tags found
No related merge requests found
From iris.bi Require Export bi.
From iris.bi Require Import tactics.
From iris.proofmode Require Export base environments classes.
From iris.proofmode Require Export base environments classes modality_instances.
Set Default Proof Using "Type".
Import bi.
Import env_notations.
......@@ -1331,39 +1331,33 @@ Proof.
Qed.
(** * Later *)
(** The classes [MaybeIntoLaterNEnvs] and [MaybeIntoLaterNEnvs] were used by
[iNext] in the past, but are currently _only_ used by other tactics that need
to introduce laters, e.g. the symbolic execution tactics. *)
Class MaybeIntoLaterNEnv (n : nat) (Γ1 Γ2 : env PROP) :=
into_laterN_env : env_Forall2 (MaybeIntoLaterN false n) Γ1 Γ2.
(** The class [MaybeIntoLaterNEnvs] is used by tactics that need to introduce
laters, e.g. the symbolic execution tactics. *)
Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs PROP) := {
into_later_persistent: MaybeIntoLaterNEnv n (env_persistent Δ1) (env_persistent Δ2);
into_later_spatial: MaybeIntoLaterNEnv n (env_spatial Δ1) (env_spatial Δ2)
into_later_persistent :
TransformPersistentEnv (modality_laterN n) (MaybeIntoLaterN false n)
(env_persistent Δ1) (env_persistent Δ2);
into_later_spatial :
TransformSpatialEnv (modality_laterN n)
(MaybeIntoLaterN false n) (env_spatial Δ1) (env_spatial Δ2) false
}.
Global Instance into_laterN_env_nil n : MaybeIntoLaterNEnv n Enil Enil.
Proof. constructor. Qed.
Global Instance into_laterN_env_snoc n Γ1 Γ2 i P Q :
MaybeIntoLaterNEnv n Γ1 Γ2 MaybeIntoLaterN false n P Q
MaybeIntoLaterNEnv n (Esnoc Γ1 i P) (Esnoc Γ2 i Q).
Proof. by constructor. Qed.
Global Instance into_laterN_envs n Γp1 Γp2 Γs1 Γs2 :
MaybeIntoLaterNEnv n Γp1 Γp2 MaybeIntoLaterNEnv n Γs1 Γs2
TransformPersistentEnv (modality_laterN n) (MaybeIntoLaterN false n) Γp1 Γp2
TransformSpatialEnv (modality_laterN n) (MaybeIntoLaterN false n) Γs1 Γs2 false
MaybeIntoLaterNEnvs n (Envs Γp1 Γs1) (Envs Γp2 Γs2).
Proof. by split. Qed.
Lemma into_laterN_env_sound n Δ1 Δ2 :
MaybeIntoLaterNEnvs n Δ1 Δ2 of_envs Δ1 ▷^n (of_envs Δ2).
Proof.
intros [Hp Hs]; rewrite /of_envs /= !laterN_and !laterN_sep.
rewrite -{1}laterN_intro -laterN_affinely_persistently_2.
apply and_mono, sep_mono.
- apply pure_mono; destruct 1; constructor;
naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
- apply affinely_mono, persistently_mono.
induction Hp; rewrite /= ?laterN_and. apply laterN_intro. by apply and_mono.
- induction Hs; rewrite /= ?laterN_sep. apply laterN_intro. by apply sep_mono.
intros [[Hp ??] [Hs ??]]; rewrite /of_envs /= !laterN_and !laterN_sep.
rewrite -{1}laterN_intro. apply and_mono, sep_mono.
- apply pure_mono; destruct 1; constructor; naive_solver.
- apply Hp; rewrite /= /MaybeIntoLaterN.
+ intros P Q ->. by rewrite laterN_affinely_persistently_2.
+ intros P Q. by rewrite laterN_and.
- by rewrite Hs //= right_id.
Qed.
Lemma tac_löb Δ Δ' i Q :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment