Skip to content
Snippets Groups Projects
Commit 555e1dad authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Clean up some useless scope delimiters.

parent eacb1c46
No related branches found
No related tags found
No related merge requests found
......@@ -411,7 +411,7 @@ Global Instance to_persistentP_persistent P :
Proof. done. Qed.
Lemma tac_persistent Δ Δ' i p P P' Q :
envs_lookup i Δ = Some (p, P)%I ToPersistentP P P'
envs_lookup i Δ = Some (p, P) ToPersistentP P P'
envs_replace i p true (Esnoc Enil i P') Δ = Some Δ'
Δ' Q Δ Q.
Proof.
......@@ -476,7 +476,7 @@ Global Instance to_wand_always R P Q : ToWand R P Q → ToWand (□ R) P Q.
but it is doing some work to keep the order of hypotheses preserved. *)
Lemma tac_specialize Δ Δ' Δ'' i p j q P1 P2 R Q :
envs_lookup_delete i Δ = Some (p, P1, Δ')
envs_lookup j (if p then Δ else Δ') = Some (q, R)%I
envs_lookup j (if p then Δ else Δ') = Some (q, R)
ToWand R P1 P2
match p with
| true => envs_simple_replace j q (Esnoc Enil j P2) Δ
......@@ -495,7 +495,7 @@ Proof.
Qed.
Lemma tac_specialize_assert Δ Δ' Δ1 Δ2' j q lr js P1 P2 R Q :
envs_lookup_delete j Δ = Some (q, R, Δ')%I
envs_lookup_delete j Δ = Some (q, R, Δ')
ToWand R P1 P2
('(Δ1,Δ2) envs_split lr js Δ';
Δ2' envs_app (envs_persistent Δ1 && q) (Esnoc Enil j P2) Δ2;
......@@ -610,7 +610,7 @@ Proof.
Qed.
Lemma tac_apply Δ Δ' i p R P1 P2 :
envs_lookup_delete i Δ = Some (p, R, Δ')%I ToWand R P1 P2
envs_lookup_delete i Δ = Some (p, R, Δ') ToWand R P1 P2
Δ' P1 Δ P2.
Proof.
intros ?? HP1. rewrite envs_lookup_delete_sound' //.
......@@ -621,7 +621,7 @@ Qed.
Lemma tac_rewrite Δ i p Pxy (lr : bool) Q :
envs_lookup i Δ = Some (p, Pxy)
{A : cofeT} (x y : A) (Φ : A uPred M),
Pxy (x y)%I
Pxy (x y)
Q ⊣⊢ Φ (if lr then y else x)
( n, Proper (dist n ==> dist n) Φ)
Δ Φ (if lr then x else y) Δ Q.
......@@ -633,9 +633,9 @@ Qed.
Lemma tac_rewrite_in Δ i p Pxy j q P (lr : bool) Q :
envs_lookup i Δ = Some (p, Pxy)
envs_lookup j Δ = Some (q, P)%I
envs_lookup j Δ = Some (q, P)
{A : cofeT} Δ' x y (Φ : A uPred M),
Pxy (x y)%I
Pxy (x y)
P ⊣⊢ Φ (if lr then y else x)
( n, Proper (dist n ==> dist n) Φ)
envs_simple_replace j q (Esnoc Enil j (Φ (if lr then x else y))) Δ = Some Δ'
......@@ -735,7 +735,7 @@ Global Instance sep_destruct_later p P Q1 Q2 :
Proof. by rewrite /SepDestruct -later_sep !always_if_later=> ->. Qed.
Lemma tac_sep_destruct Δ Δ' i p j1 j2 P P1 P2 Q :
envs_lookup i Δ = Some (p, P)%I SepDestruct p P P1 P2
envs_lookup i Δ = Some (p, P) SepDestruct p P P1 P2
envs_simple_replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) Δ = Some Δ'
Δ' Q Δ Q.
Proof.
......@@ -794,7 +794,7 @@ Global Instance frame_forall {A} R (Φ : A → uPred M) mΨ :
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.
Lemma tac_frame Δ Δ' i p R P mQ :
envs_lookup_delete i Δ = Some (p, R, Δ')%I Frame R P mQ
envs_lookup_delete i Δ = Some (p, R, Δ') Frame R P mQ
(if mQ is Some Q then (if p then Δ else Δ') Q else True)
Δ P.
Proof.
......@@ -889,7 +889,7 @@ Global Instance exist_destruct_later {A} P (Φ : A → uPred M) :
Proof. rewrite /ExistDestruct=> HP ?. by rewrite HP later_exist. Qed.
Lemma tac_exist_destruct {A} Δ i p j P (Φ : A uPred M) Q :
envs_lookup i Δ = Some (p, P)%I ExistDestruct P Φ
envs_lookup i Δ = Some (p, P) ExistDestruct P Φ
( a, Δ',
envs_simple_replace i p (Esnoc Enil j (Φ a)) Δ = Some Δ' Δ' Q)
Δ Q.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment