Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
52814959
Commit
52814959
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Add type for positive rationals.
parent
0b440787
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
prelude/numbers.v
+74
-1
74 additions, 1 deletion
prelude/numbers.v
with
74 additions
and
1 deletion
prelude/numbers.v
+
74
−
1
View file @
52814959
...
@@ -9,6 +9,8 @@ From prelude Require Export base decidable option.
...
@@ -9,6 +9,8 @@ From prelude Require Export base decidable option.
Open
Scope
nat_scope
.
Open
Scope
nat_scope
.
Coercion
Z
.
of_nat
:
nat
>->
Z
.
Coercion
Z
.
of_nat
:
nat
>->
Z
.
Instance
comparison_eq_dec
(
c1
c2
:
comparison
)
:
Decision
(
c1
=
c2
)
.
Proof
.
solve_decision
.
Defined
.
(** * Notations and properties of [nat] *)
(** * Notations and properties of [nat] *)
Arguments
minus
!
_
!
_
/.
Arguments
minus
!
_
!
_
/.
...
@@ -104,7 +106,9 @@ Notation "(<)" := Pos.lt (only parsing) : positive_scope.
...
@@ -104,7 +106,9 @@ Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Notation
"(~0)"
:=
xO
(
only
parsing
)
:
positive_scope
.
Notation
"(~0)"
:=
xO
(
only
parsing
)
:
positive_scope
.
Notation
"(~1)"
:=
xI
(
only
parsing
)
:
positive_scope
.
Notation
"(~1)"
:=
xI
(
only
parsing
)
:
positive_scope
.
Arguments
Pos
.
of_nat
_
:
simpl
never
.
Arguments
Pos
.
of_nat
:
simpl
never
.
Arguments
Pmult
:
simpl
never
.
Instance
positive_eq_dec
:
∀
x
y
:
positive
,
Decision
(
x
=
y
)
:=
Pos
.
eq_dec
.
Instance
positive_eq_dec
:
∀
x
y
:
positive
,
Decision
(
x
=
y
)
:=
Pos
.
eq_dec
.
Instance
positive_inhabited
:
Inhabited
positive
:=
populate
1
.
Instance
positive_inhabited
:
Inhabited
positive
:=
populate
1
.
...
@@ -353,6 +357,8 @@ Lemma Qcmult_0_l x : 0 * x = 0.
...
@@ -353,6 +357,8 @@ Lemma Qcmult_0_l x : 0 * x = 0.
Proof
.
ring
.
Qed
.
Proof
.
ring
.
Qed
.
Lemma
Qcmult_0_r
x
:
x
*
0
=
0
.
Lemma
Qcmult_0_r
x
:
x
*
0
=
0
.
Proof
.
ring
.
Qed
.
Proof
.
ring
.
Qed
.
Lemma
Qcplus_diag
x
:
(
x
+
x
)
%
Qc
=
(
2
*
x
)
%
Qc
.
Proof
.
ring
.
Qed
.
Lemma
Qcle_ngt
(
x
y
:
Qc
)
:
x
≤
y
↔
¬
y
<
x
.
Lemma
Qcle_ngt
(
x
y
:
Qc
)
:
x
≤
y
↔
¬
y
<
x
.
Proof
.
split
;
auto
using
Qcle_not_lt
,
Qcnot_lt_le
.
Qed
.
Proof
.
split
;
auto
using
Qcle_not_lt
,
Qcnot_lt_le
.
Qed
.
Lemma
Qclt_nge
(
x
y
:
Qc
)
:
x
<
y
↔
¬
y
≤
x
.
Lemma
Qclt_nge
(
x
y
:
Qc
)
:
x
<
y
↔
¬
y
≤
x
.
...
@@ -445,6 +451,10 @@ Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
...
@@ -445,6 +451,10 @@ Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion
Qc_of_Z
(
n
:
Z
)
:
Qc
:=
Qcmake
_
(
inject_Z_Qred
n
)
.
Coercion
Qc_of_Z
(
n
:
Z
)
:
Qc
:=
Qcmake
_
(
inject_Z_Qred
n
)
.
Lemma
Z2Qc_inj_0
:
Qc_of_Z
0
=
0
.
Lemma
Z2Qc_inj_0
:
Qc_of_Z
0
=
0
.
Proof
.
by
apply
Qc_is_canon
.
Qed
.
Proof
.
by
apply
Qc_is_canon
.
Qed
.
Lemma
Z2Qc_inj_1
:
Qc_of_Z
1
=
1
.
Proof
.
by
apply
Qc_is_canon
.
Qed
.
Lemma
Z2Qc_inj_2
:
Qc_of_Z
2
=
2
.
Proof
.
by
apply
Qc_is_canon
.
Qed
.
Lemma
Z2Qc_inj
n
m
:
Qc_of_Z
n
=
Qc_of_Z
m
→
n
=
m
.
Lemma
Z2Qc_inj
n
m
:
Qc_of_Z
n
=
Qc_of_Z
m
→
n
=
m
.
Proof
.
by
injection
1
.
Qed
.
Proof
.
by
injection
1
.
Qed
.
Lemma
Z2Qc_inj_iff
n
m
:
Qc_of_Z
n
=
Qc_of_Z
m
↔
n
=
m
.
Lemma
Z2Qc_inj_iff
n
m
:
Qc_of_Z
n
=
Qc_of_Z
m
↔
n
=
m
.
...
@@ -465,3 +475,66 @@ Proof.
...
@@ -465,3 +475,66 @@ Proof.
by
rewrite
!
Qred_correct
,
<-
inject_Z_opp
,
<-
inject_Z_plus
.
by
rewrite
!
Qred_correct
,
<-
inject_Z_opp
,
<-
inject_Z_plus
.
Qed
.
Qed
.
Close
Scope
Qc_scope
.
Close
Scope
Qc_scope
.
(** * Positive rationals *)
(** The theory of positive rationals is very incomplete. We merely provide
some operations and theorems that are relevant for fractional permissions. *)
Record
Qp
:=
mk_Qp
{
Qp_car
:>
Qc
;
Qp_prf
:
(
0
<
Qp_car
)
%
Qc
}
.
Hint
Resolve
Qp_prf
.
Delimit
Scope
Qp_scope
with
Qp
.
Bind
Scope
Qp_scope
with
Qp
.
Arguments
Qp_car
_
%
Qp
.
Definition
Qp_one
:
Qp
:=
mk_Qp
1
eq_refl
.
Program
Definition
Qp_plus
(
x
y
:
Qp
)
:
Qp
:=
mk_Qp
(
x
+
y
)
_
.
Next
Obligation
.
by
intros
x
y
;
apply
Qcplus_pos_pos
.
Qed
.
Definition
Qp_minus
(
x
y
:
Qp
)
:
option
Qp
:=
let
z
:=
(
x
-
y
)
%
Qc
in
match
decide
(
0
<
z
)
%
Qc
with
left
Hz
=>
Some
(
mk_Qp
z
Hz
)
|
_
=>
None
end
.
Program
Definition
Qp_div
(
x
:
Qp
)
(
y
:
positive
)
:
Qp
:=
mk_Qp
(
x
/
(
'
y
)
%
Z
)
_
.
Next
Obligation
.
intros
x
y
.
assert
(
0
<
(
'
y
)
%
Z
)
%
Qc
.
{
apply
(
Z2Qc_inj_lt
0
%
Z
(
'
y
)),
Pos2Z
.
is_pos
.
}
by
rewrite
(
Qcmult_lt_mono_pos_r
_
_
(
'
y
)
%
Z
),
Qcmult_0_l
,
<-
Qcmult_assoc
,
Qcmult_inv_l
,
Qcmult_1_r
.
Qed
.
Notation
"1"
:=
Qp_one
:
Qp_scope
.
Infix
"+"
:=
Qp_plus
:
Qp_scope
.
Infix
"-"
:=
Qp_minus
:
Qp_scope
.
Infix
"/"
:=
Qp_div
:
Qp_scope
.
Lemma
Qp_eq
x
y
:
x
=
y
↔
Qp_car
x
=
Qp_car
y
.
Proof
.
split
;
[
by
intros
->
|]
.
destruct
x
,
y
;
intros
;
simplify_eq
/=
;
f_equal
;
apply
(
proof_irrel
_)
.
Qed
.
Instance
Qp_plus_assoc
:
Assoc
(
=
)
Qp_plus
.
Proof
.
intros
x
y
z
;
apply
Qp_eq
,
Qcplus_assoc
.
Qed
.
Instance
Qp_plus_comm
:
Comm
(
=
)
Qp_plus
.
Proof
.
intros
x
y
;
apply
Qp_eq
,
Qcplus_comm
.
Qed
.
Lemma
Qp_minus_diag
x
:
(
x
-
x
)
%
Qp
=
None
.
Proof
.
unfold
Qp_minus
.
by
rewrite
Qcplus_opp_r
.
Qed
.
Lemma
Qp_op_minus
x
y
:
((
x
+
y
)
-
x
)
%
Qp
=
Some
y
.
Proof
.
unfold
Qp_minus
;
simpl
.
rewrite
(
Qcplus_comm
x
),
<-
Qcplus_assoc
,
Qcplus_opp_r
,
Qcplus_0_r
.
destruct
(
decide
_)
as
[|[]];
auto
.
by
f_equal
;
apply
Qp_eq
.
Qed
.
Lemma
Qp_div_1
x
:
(
x
/
1
=
x
)
%
Qp
.
Proof
.
apply
Qp_eq
;
simpl
.
rewrite
<-
(
Qcmult_div_r
x
1
)
at
2
by
done
.
by
rewrite
Qcmult_1_l
.
Qed
.
Lemma
Qp_div_S
x
y
:
(
x
/
(
2
*
y
)
+
x
/
(
2
*
y
)
=
x
/
y
)
%
Qp
.
Proof
.
apply
Qp_eq
;
simpl
.
rewrite
<-
Qcmult_plus_distr_l
,
Pos2Z
.
inj_mul
,
Z2Qc_inj_mul
,
Z2Qc_inj_2
.
rewrite
Qcplus_diag
.
by
field_simplify
.
Qed
.
Lemma
Qp_div_2
x
:
(
x
/
2
+
x
/
2
=
x
)
%
Qp
.
Proof
.
change
2
%
positive
with
(
2
*
1
)
%
positive
.
by
rewrite
Qp_div_S
,
Qp_div_1
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment