Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
3034d8ef
Commit
3034d8ef
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Use Disjoint type class to get nice notation for ndisjoint.
Also, put stuff in a section.
parent
b07dd0b5
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
barrier/barrier.v
+1
-1
1 addition, 1 deletion
barrier/barrier.v
program_logic/invariants.v
+25
-32
25 additions, 32 deletions
program_logic/invariants.v
with
26 additions
and
33 deletions
barrier/barrier.v
+
1
−
1
View file @
3034d8ef
...
@@ -102,7 +102,7 @@ Section proof.
...
@@ -102,7 +102,7 @@ Section proof.
(* TODO We could alternatively construct the namespaces to be disjoint.
(* TODO We could alternatively construct the namespaces to be disjoint.
But that would take a lot of flexibility from the client, who probably
But that would take a lot of flexibility from the client, who probably
wants to also use the heap_ctx elsewhere. *)
wants to also use the heap_ctx elsewhere. *)
Context
(
HeapN_disj
:
ndisj
HeapN
N
)
.
Context
(
HeapN_disj
:
HeapN
⊥
N
)
.
Notation
iProp
:=
(
iPropG
heap_lang
Σ
)
.
Notation
iProp
:=
(
iPropG
heap_lang
Σ
)
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/invariants.v
+
25
−
32
View file @
3034d8ef
...
@@ -9,7 +9,6 @@ Local Hint Extern 100 (@subseteq coPset _ _) => solve_elem_of.
...
@@ -9,7 +9,6 @@ Local Hint Extern 100 (@subseteq coPset _ _) => solve_elem_of.
Local
Hint
Extern
100
(_
∉
_)
=>
solve_elem_of
.
Local
Hint
Extern
100
(_
∉
_)
=>
solve_elem_of
.
Local
Hint
Extern
99
({[
_
]}
⊆
_)
=>
apply
elem_of_subseteq_singleton
.
Local
Hint
Extern
99
({[
_
]}
⊆
_)
=>
apply
elem_of_subseteq_singleton
.
Definition
namespace
:=
list
positive
.
Definition
namespace
:=
list
positive
.
Definition
nnil
:
namespace
:=
nil
.
Definition
nnil
:
namespace
:=
nil
.
Definition
ndot
`{
Countable
A
}
(
N
:
namespace
)
(
x
:
A
)
:
namespace
:=
Definition
ndot
`{
Countable
A
}
(
N
:
namespace
)
(
x
:
A
)
:
namespace
:=
...
@@ -31,44 +30,38 @@ Qed.
...
@@ -31,44 +30,38 @@ Qed.
Lemma
ndot_nclose
`{
Countable
A
}
N
x
:
encode
(
ndot
N
x
)
∈
nclose
N
.
Lemma
ndot_nclose
`{
Countable
A
}
N
x
:
encode
(
ndot
N
x
)
∈
nclose
N
.
Proof
.
apply
nclose_subseteq
with
x
,
encode_nclose
.
Qed
.
Proof
.
apply
nclose_subseteq
with
x
,
encode_nclose
.
Qed
.
Definition
ndisj
(
N1
N2
:
namespace
)
:=
Instance
ndisjoint
:
Disjoint
namespace
:=
λ
N1
N2
,
∃
N1'
N2'
,
N1'
`
suffix_of
`
N1
∧
N2'
`
suffix_of
`
N2
∧
∃
N1'
N2'
,
N1'
`
suffix_of
`
N1
∧
N2'
`
suffix_of
`
N2
∧
length
N1'
=
length
N2'
∧
N1'
≠
N2'
.
length
N1'
=
length
N2'
∧
N1'
≠
N2'
.
Global
Instance
ndisj_comm
:
Comm
iff
ndisj
.
Section
ndisjoint
.
Proof
.
intros
N1
N2
.
rewrite
/
ndisj
;
naive_solver
.
Qed
.
Context
`{
Countable
A
}
.
Implicit
Types
x
y
:
A
.
Lemma
ndot_ne_disj
`{
Countable
A
}
N
(
x
y
:
A
)
:
Global
Instance
ndisjoint_comm
:
Comm
iff
ndisjoint
.
x
≠
y
→
ndisj
(
ndot
N
x
)
(
ndot
N
y
)
.
Proof
.
intros
N1
N2
.
rewrite
/
disjoint
/
ndisjoint
;
naive_solver
.
Qed
.
Proof
.
intros
Hxy
.
exists
(
ndot
N
x
),
(
ndot
N
y
)
.
split_ands
;
try
done
;
[]
.
by
apply
not_inj2_2
.
Qed
.
Lemma
ndot_preserve_disj_l
`{
Countable
A
}
N1
N2
(
x
:
A
)
:
Lemma
ndot_ne_disjoint
N
(
x
y
:
A
)
:
x
≠
y
→
ndot
N
x
⊥
ndot
N
y
.
ndisj
N1
N2
→
ndisj
(
ndot
N1
x
)
N2
.
Proof
.
intros
Hxy
.
exists
(
ndot
N
x
),
(
ndot
N
y
);
naive_solver
.
Qed
.
Proof
.
intros
(
N1'
&
N2'
&
Hpr1
&
Hpr2
&
Hl
&
Hne
)
.
exists
N1'
,
N2'
.
split_ands
;
try
done
;
[]
.
by
apply
suffix_of_cons_r
.
Qed
.
Lemma
ndot_preserve_disj
_r
`{
Countable
A
}
N1
N2
(
x
:
A
)
:
Lemma
ndot_preserve_disj
oint_l
N1
N2
x
:
N1
⊥
N2
→
ndot
N1
x
⊥
N2
.
ndisj
N1
N2
→
ndisj
N1
(
ndot
N2
x
)
.
Proof
.
Proof
.
intros
(
N1'
&
N2'
&
Hpr1
&
Hpr2
&
Hl
&
Hne
)
.
exists
N1'
,
N2'
.
rewrite
!
[
ndisj
N1
_]
comm
.
apply
ndot_preserve_disj_l
.
split_ands
;
try
done
;
[]
.
by
apply
suffix_of_cons_r
.
Qed
.
Qed
.
Lemma
ndisj_disjoint
N1
N2
:
Lemma
ndot_preserve_disjoint_r
N1
N2
x
:
N1
⊥
N2
→
N1
⊥
ndot
N2
x
.
ndisj
N1
N2
→
nclose
N1
∩
nclose
N2
=
∅.
Proof
.
rewrite
!
[
N1
⊥
_]
comm
.
apply
ndot_preserve_disjoint_l
.
Qed
.
Proof
.
intros
(
N1'
&
N2'
&
[
N1''
Hpr1
]
&
[
N2''
Hpr2
]
&
Hl
&
Hne
)
.
subst
N1
N2
.
apply
elem_of_equiv_empty_L
=>
p
;
unfold
nclose
.
rewrite
elem_of_intersection
!
elem_coPset_suffixes
;
intros
[[
q
->
]
[
q'
Hq
]]
.
rewrite
!
list_encode_app
!
assoc
in
Hq
.
apply
Hne
.
eapply
list_encode_suffix_eq
;
done
.
Qed
.
Local
Hint
Resolve
nclose_subseteq
ndot_nclose
.
Lemma
ndisj_disjoint
N1
N2
:
N1
⊥
N2
→
nclose
N1
∩
nclose
N2
=
∅.
Proof
.
intros
(
N1'
&
N2'
&
[
N1''
->
]
&
[
N2''
->
]
&
Hl
&
Hne
)
.
apply
elem_of_equiv_empty_L
=>
p
;
unfold
nclose
.
rewrite
elem_of_intersection
!
elem_coPset_suffixes
;
intros
[[
q
->
]
[
q'
Hq
]]
.
rewrite
!
list_encode_app
!
assoc
in
Hq
.
by
eapply
Hne
,
list_encode_suffix_eq
.
Qed
.
End
ndisjoint
.
(** Derived forms and lemmas about them. *)
(** Derived forms and lemmas about them. *)
Definition
inv
{
Λ
Σ
}
(
N
:
namespace
)
(
P
:
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:=
Definition
inv
{
Λ
Σ
}
(
N
:
namespace
)
(
P
:
iProp
Λ
Σ
)
:
iProp
Λ
Σ
:=
...
@@ -128,7 +121,7 @@ Proof. intros. by apply: (inv_fsa pvs_fsa). Qed.
...
@@ -128,7 +121,7 @@ Proof. intros. by apply: (inv_fsa pvs_fsa). Qed.
Lemma
wp_open_close
E
e
N
P
(
Q
:
val
Λ
→
iProp
Λ
Σ
)
R
:
Lemma
wp_open_close
E
e
N
P
(
Q
:
val
Λ
→
iProp
Λ
Σ
)
R
:
atomic
e
→
nclose
N
⊆
E
→
atomic
e
→
nclose
N
⊆
E
→
R
⊑
inv
N
P
→
R
⊑
inv
N
P
→
R
⊑
(
▷
P
-★
wp
(
E
∖
nclose
N
)
e
(
λ
v
,
▷
P
★
Q
v
))
→
R
⊑
(
▷
P
-★
wp
(
E
∖
nclose
N
)
e
(
λ
v
,
▷
P
★
Q
v
))
→
R
⊑
wp
E
e
Q
.
R
⊑
wp
E
e
Q
.
Proof
.
intros
.
by
apply
:
(
inv_fsa
(
wp_fsa
e
))
.
Qed
.
Proof
.
intros
.
by
apply
:
(
inv_fsa
(
wp_fsa
e
))
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment