Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
2d1f0ac2
Commit
2d1f0ac2
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Type class of uPreds that are stable under □.
parent
4ff6c69f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
iris/hoare.v
+7
-7
7 additions, 7 deletions
iris/hoare.v
iris/pviewshifts.v
+6
-4
6 additions, 4 deletions
iris/pviewshifts.v
iris/weakestpre.v
+6
-4
6 additions, 4 deletions
iris/weakestpre.v
modures/logic.v
+46
-3
46 additions, 3 deletions
modures/logic.v
with
65 additions
and
18 deletions
iris/hoare.v
+
7
−
7
View file @
2d1f0ac2
...
@@ -33,15 +33,15 @@ Proof. by intros P P' HP e ? <- Q Q' HQ; apply ht_mono. Qed.
...
@@ -33,15 +33,15 @@ Proof. by intros P P' HP e ? <- Q Q' HQ; apply ht_mono. Qed.
Lemma
ht_val
E
v
:
Lemma
ht_val
E
v
:
{{
True
}}
of_val
v
@
E
{{
λ
v'
,
■
(
v
=
v'
)
}}
.
{{
True
}}
of_val
v
@
E
{{
λ
v'
,
■
(
v
=
v'
)
}}
.
Proof
.
Proof
.
rewrite
-
{
1
}
always_const
;
apply
always_intro
,
impl_intro_l
.
apply
(
always_intro
'
_
_)
,
impl_intro_l
.
by
rewrite
-
wp_value
-
pvs_intro
;
apply
const_intro
.
by
rewrite
-
wp_value
-
pvs_intro
;
apply
const_intro
.
Qed
.
Qed
.
Lemma
ht_vs
E
P
P'
Q
Q'
e
:
Lemma
ht_vs
E
P
P'
Q
Q'
e
:
(
P
>
{
E
}
>
P'
∧
{{
P'
}}
e
@
E
{{
Q'
}}
∧
∀
v
,
Q'
v
>
{
E
}
>
Q
v
)
(
P
>
{
E
}
>
P'
∧
{{
P'
}}
e
@
E
{{
Q'
}}
∧
∀
v
,
Q'
v
>
{
E
}
>
Q
v
)
⊑
{{
P
}}
e
@
E
{{
Q
}}
.
⊑
{{
P
}}
e
@
E
{{
Q
}}
.
Proof
.
Proof
.
rewrite
-
always_forall
-!
always_and
;
apply
always_intro
,
impl_intro_l
.
apply
(
always_intro
'
_
_)
,
impl_intro_l
.
rewrite
!
always_and
(
associative
_
P
)
(
always_elim
(
P
→
_))
impl_elim_r
.
rewrite
(
associative
_
P
)
{
1
}
/
vs
always_elim
impl_elim_r
.
rewrite
(
associative
_)
pvs_impl_r
pvs_always_r
wp_always_r
.
rewrite
(
associative
_)
pvs_impl_r
pvs_always_r
wp_always_r
.
rewrite
wp_pvs
;
apply
wp_mono
=>
v
.
rewrite
wp_pvs
;
apply
wp_mono
=>
v
.
by
rewrite
(
forall_elim
_
v
)
pvs_impl_r
!
pvs_trans'
.
by
rewrite
(
forall_elim
_
v
)
pvs_impl_r
!
pvs_trans'
.
...
@@ -51,8 +51,8 @@ Lemma ht_atomic E1 E2 P P' Q Q' e :
...
@@ -51,8 +51,8 @@ Lemma ht_atomic E1 E2 P P' Q Q' e :
(
P
>
{
E1
,
E2
}
>
P'
∧
{{
P'
}}
e
@
E2
{{
Q'
}}
∧
∀
v
,
Q'
v
>
{
E2
,
E1
}
>
Q
v
)
(
P
>
{
E1
,
E2
}
>
P'
∧
{{
P'
}}
e
@
E2
{{
Q'
}}
∧
∀
v
,
Q'
v
>
{
E2
,
E1
}
>
Q
v
)
⊑
{{
P
}}
e
@
E1
{{
Q
}}
.
⊑
{{
P
}}
e
@
E1
{{
Q
}}
.
Proof
.
Proof
.
intros
;
rewrite
-
always_forall
-!
always_and
;
apply
always_intro
,
impl_intro_l
.
intros
??
;
apply
(
always_intro
'
_
_)
,
impl_intro_l
.
rewrite
!
always_and
(
associative
_
P
)
(
always_elim
(
P
→
_))
impl_elim_r
.
rewrite
(
associative
_
P
)
{
1
}
/
vs
always_elim
impl_elim_r
.
rewrite
(
associative
_)
pvs_impl_r
pvs_always_r
wp_always_r
.
rewrite
(
associative
_)
pvs_impl_r
pvs_always_r
wp_always_r
.
rewrite
-
(
wp_atomic
E1
E2
)
//
;
apply
pvs_mono
,
wp_mono
=>
v
.
rewrite
-
(
wp_atomic
E1
E2
)
//
;
apply
pvs_mono
,
wp_mono
=>
v
.
rewrite
(
forall_elim
_
v
)
pvs_impl_r
-
(
pvs_intro
E1
)
pvs_trans
;
solve_elem_of
.
rewrite
(
forall_elim
_
v
)
pvs_impl_r
-
(
pvs_intro
E1
)
pvs_trans
;
solve_elem_of
.
...
@@ -61,8 +61,8 @@ Lemma ht_bind `(HK : is_ctx K) E P Q Q' e :
...
@@ -61,8 +61,8 @@ Lemma ht_bind `(HK : is_ctx K) E P Q Q' e :
({{
P
}}
e
@
E
{{
Q
}}
∧
∀
v
,
{{
Q
v
}}
K
(
of_val
v
)
@
E
{{
Q'
}})
({{
P
}}
e
@
E
{{
Q
}}
∧
∀
v
,
{{
Q
v
}}
K
(
of_val
v
)
@
E
{{
Q'
}})
⊑
{{
P
}}
K
e
@
E
{{
Q'
}}
.
⊑
{{
P
}}
K
e
@
E
{{
Q'
}}
.
Proof
.
Proof
.
intros
;
rewrite
-
always_forall
-!
always_and
;
apply
always_intro
,
impl_intro_l
.
intros
;
apply
(
always_intro
'
_
_)
,
impl_intro_l
.
rewrite
!
always_and
(
associative
_
P
)
(
always_elim
(
P
→
_))
impl_elim_r
.
rewrite
(
associative
_
P
)
{
1
}
/
ht
always_elim
impl_elim_r
.
rewrite
wp_always_r
-
wp_bind
//
;
apply
wp_mono
=>
v
.
rewrite
wp_always_r
-
wp_bind
//
;
apply
wp_mono
=>
v
.
rewrite
(
forall_elim
_
v
)
pvs_impl_r
wp_pvs
;
apply
wp_mono
=>
v'
.
rewrite
(
forall_elim
_
v
)
pvs_impl_r
wp_pvs
;
apply
wp_mono
=>
v'
.
by
rewrite
pvs_trans'
.
by
rewrite
pvs_trans'
.
...
...
This diff is collapsed.
Click to expand it.
iris/pviewshifts.v
+
6
−
4
View file @
2d1f0ac2
...
@@ -120,10 +120,12 @@ Lemma pvs_trans' E P : pvs E E (pvs E E P) ⊑ pvs E E P.
...
@@ -120,10 +120,12 @@ Lemma pvs_trans' E P : pvs E E (pvs E E P) ⊑ pvs E E P.
Proof
.
apply
pvs_trans
;
solve_elem_of
.
Qed
.
Proof
.
apply
pvs_trans
;
solve_elem_of
.
Qed
.
Lemma
pvs_frame_l
E1
E2
P
Q
:
(
P
★
pvs
E1
E2
Q
)
⊑
pvs
E1
E2
(
P
★
Q
)
.
Lemma
pvs_frame_l
E1
E2
P
Q
:
(
P
★
pvs
E1
E2
Q
)
⊑
pvs
E1
E2
(
P
★
Q
)
.
Proof
.
rewrite
!
(
commutative
_
P
);
apply
pvs_frame_r
.
Qed
.
Proof
.
rewrite
!
(
commutative
_
P
);
apply
pvs_frame_r
.
Qed
.
Lemma
pvs_always_l
E1
E2
P
Q
:
(
□
P
∧
pvs
E1
E2
Q
)
⊑
pvs
E1
E2
(
□
P
∧
Q
)
.
Lemma
pvs_always_l
E1
E2
P
Q
`{
!
AlwaysStable
P
}
:
Proof
.
by
rewrite
!
always_and_sep_l
pvs_frame_l
.
Qed
.
(
P
∧
pvs
E1
E2
Q
)
⊑
pvs
E1
E2
(
P
∧
Q
)
.
Lemma
pvs_always_r
E1
E2
P
Q
:
(
pvs
E1
E2
P
∧
□
Q
)
⊑
pvs
E1
E2
(
P
∧
□
Q
)
.
Proof
.
by
rewrite
!
always_and_sep_l'
pvs_frame_l
.
Qed
.
Proof
.
by
rewrite
!
always_and_sep_r
pvs_frame_r
.
Qed
.
Lemma
pvs_always_r
E1
E2
P
Q
`{
!
AlwaysStable
Q
}
:
(
pvs
E1
E2
P
∧
Q
)
⊑
pvs
E1
E2
(
P
∧
Q
)
.
Proof
.
by
rewrite
!
always_and_sep_r'
pvs_frame_r
.
Qed
.
Lemma
pvs_impl_l
E1
E2
P
Q
:
(
□
(
P
→
Q
)
∧
pvs
E1
E2
P
)
⊑
pvs
E1
E2
Q
.
Lemma
pvs_impl_l
E1
E2
P
Q
:
(
□
(
P
→
Q
)
∧
pvs
E1
E2
P
)
⊑
pvs
E1
E2
Q
.
Proof
.
by
rewrite
pvs_always_l
always_elim
impl_elim_l
.
Qed
.
Proof
.
by
rewrite
pvs_always_l
always_elim
impl_elim_l
.
Qed
.
Lemma
pvs_impl_r
E1
E2
P
Q
:
(
pvs
E1
E2
P
∧
□
(
P
→
Q
))
⊑
pvs
E1
E2
Q
.
Lemma
pvs_impl_r
E1
E2
P
Q
:
(
pvs
E1
E2
P
∧
□
(
P
→
Q
))
⊑
pvs
E1
E2
Q
.
...
...
This diff is collapsed.
Click to expand it.
iris/weakestpre.v
+
6
−
4
View file @
2d1f0ac2
...
@@ -177,10 +177,12 @@ Proof.
...
@@ -177,10 +177,12 @@ Proof.
rewrite
(
commutative
_
(
▷
R
)
%
I
);
setoid_rewrite
(
commutative
_
R
)
.
rewrite
(
commutative
_
(
▷
R
)
%
I
);
setoid_rewrite
(
commutative
_
R
)
.
apply
wp_frame_later_r
.
apply
wp_frame_later_r
.
Qed
.
Qed
.
Lemma
wp_always_l
E
e
Q
R
:
(
□
R
∧
wp
E
e
Q
)
⊑
wp
E
e
(
λ
v
,
□
R
∧
Q
v
)
.
Lemma
wp_always_l
E
e
Q
R
`{
!
AlwaysStable
R
}
:
Proof
.
by
setoid_rewrite
always_and_sep_l
;
rewrite
wp_frame_l
.
Qed
.
(
R
∧
wp
E
e
Q
)
⊑
wp
E
e
(
λ
v
,
R
∧
Q
v
)
.
Lemma
wp_always_r
E
e
Q
R
:
(
wp
E
e
Q
∧
□
R
)
⊑
wp
E
e
(
λ
v
,
Q
v
∧
□
R
)
.
Proof
.
by
setoid_rewrite
(
always_and_sep_l'
_
_);
rewrite
wp_frame_l
.
Qed
.
Proof
.
by
setoid_rewrite
always_and_sep_r
;
rewrite
wp_frame_r
.
Qed
.
Lemma
wp_always_r
E
e
Q
R
`{
!
AlwaysStable
R
}
:
(
wp
E
e
Q
∧
R
)
⊑
wp
E
e
(
λ
v
,
Q
v
∧
R
)
.
Proof
.
by
setoid_rewrite
(
always_and_sep_r'
_
_);
rewrite
wp_frame_r
.
Qed
.
Lemma
wp_impl_l
E
e
Q1
Q2
:
((
□
∀
v
,
Q1
v
→
Q2
v
)
∧
wp
E
e
Q1
)
⊑
wp
E
e
Q2
.
Lemma
wp_impl_l
E
e
Q1
Q2
:
((
□
∀
v
,
Q1
v
→
Q2
v
)
∧
wp
E
e
Q1
)
⊑
wp
E
e
Q2
.
Proof
.
Proof
.
rewrite
wp_always_l
;
apply
wp_mono
=>
v
.
rewrite
wp_always_l
;
apply
wp_mono
=>
v
.
...
...
This diff is collapsed.
Click to expand it.
modures/logic.v
+
46
−
3
View file @
2d1f0ac2
...
@@ -223,6 +223,8 @@ Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
...
@@ -223,6 +223,8 @@ Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
Class
TimelessP
{
M
}
(
P
:
uPred
M
)
:=
timelessP
:
▷
P
⊑
(
P
∨
▷
False
)
.
Class
TimelessP
{
M
}
(
P
:
uPred
M
)
:=
timelessP
:
▷
P
⊑
(
P
∨
▷
False
)
.
Arguments
timelessP
{_}
_
{_}
_
_
_
_
.
Arguments
timelessP
{_}
_
{_}
_
_
_
_
.
Class
AlwaysStable
{
M
}
(
P
:
uPred
M
)
:=
always_stable
:
P
⊑
□
P
.
Arguments
always_stable
{_}
_
{_}
_
_
_
_
.
Module
uPred
.
Section
uPred_logic
.
Module
uPred
.
Section
uPred_logic
.
Context
{
M
:
cmraT
}
.
Context
{
M
:
cmraT
}
.
...
@@ -685,8 +687,6 @@ Lemma always_later P : (□ ▷ P)%I ≡ (▷ □ P)%I.
...
@@ -685,8 +687,6 @@ Lemma always_later P : (□ ▷ P)%I ≡ (▷ □ P)%I.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
(* Always derived *)
(* Always derived *)
Lemma
always_always
P
:
(
□
□
P
)
%
I
≡
(
□
P
)
%
I
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_elim
,
always_intro
.
Qed
.
Lemma
always_mono
P
Q
:
P
⊑
Q
→
□
P
⊑
□
Q
.
Lemma
always_mono
P
Q
:
P
⊑
Q
→
□
P
⊑
□
Q
.
Proof
.
intros
.
apply
always_intro
.
by
rewrite
always_elim
.
Qed
.
Proof
.
intros
.
apply
always_intro
.
by
rewrite
always_elim
.
Qed
.
Hint
Resolve
always_mono
.
Hint
Resolve
always_mono
.
...
@@ -709,7 +709,7 @@ Proof. apply (anti_symmetric (⊑)); auto using always_and_sep_1. Qed.
...
@@ -709,7 +709,7 @@ Proof. apply (anti_symmetric (⊑)); auto using always_and_sep_1. Qed.
Lemma
always_and_sep_l
P
Q
:
(
□
P
∧
Q
)
%
I
≡
(
□
P
★
Q
)
%
I
.
Lemma
always_and_sep_l
P
Q
:
(
□
P
∧
Q
)
%
I
≡
(
□
P
★
Q
)
%
I
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_and_sep_l_1
.
Qed
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_and_sep_l_1
.
Qed
.
Lemma
always_and_sep_r
P
Q
:
(
P
∧
□
Q
)
%
I
≡
(
P
★
□
Q
)
%
I
.
Lemma
always_and_sep_r
P
Q
:
(
P
∧
□
Q
)
%
I
≡
(
P
★
□
Q
)
%
I
.
Proof
.
rewrite
!
(
commutative
_
P
)
;
apply
always_and_sep_l
.
Qed
.
Proof
.
by
rewrite
!
(
commutative
_
P
)
always_and_sep_l
.
Qed
.
Lemma
always_sep
P
Q
:
(
□
(
P
★
Q
))
%
I
≡
(
□
P
★
□
Q
)
%
I
.
Lemma
always_sep
P
Q
:
(
□
(
P
★
Q
))
%
I
≡
(
□
P
★
□
Q
)
%
I
.
Proof
.
by
rewrite
-
always_and_sep
-
always_and_sep_l
always_and
.
Qed
.
Proof
.
by
rewrite
-
always_and_sep
-
always_and_sep_l
always_and
.
Qed
.
Lemma
always_wand
P
Q
:
□
(
P
-★
Q
)
⊑
(
□
P
-★
□
Q
)
.
Lemma
always_wand
P
Q
:
□
(
P
-★
Q
)
⊑
(
□
P
-★
□
Q
)
.
...
@@ -755,6 +755,8 @@ Qed.
...
@@ -755,6 +755,8 @@ Qed.
Lemma
valid_mono
{
A
B
:
cmraT
}
(
a
:
A
)
(
b
:
B
)
:
Lemma
valid_mono
{
A
B
:
cmraT
}
(
a
:
A
)
(
b
:
B
)
:
(
∀
n
,
✓
{
n
}
a
→
✓
{
n
}
b
)
→
(
✓
a
)
⊑
(
✓
b
)
.
(
∀
n
,
✓
{
n
}
a
→
✓
{
n
}
b
)
→
(
✓
a
)
⊑
(
✓
b
)
.
Proof
.
by
intros
?
x
n
?;
simpl
;
auto
.
Qed
.
Proof
.
by
intros
?
x
n
?;
simpl
;
auto
.
Qed
.
Lemma
always_valid
{
A
:
cmraT
}
(
a
:
A
)
:
(
□
(
✓
a
))
%
I
≡
(
✓
a
:
uPred
M
)
%
I
.
Proof
.
done
.
Qed
.
Lemma
own_invalid
(
a
:
M
)
:
¬
✓
{
1
}
a
→
uPred_own
a
⊑
False
.
Lemma
own_invalid
(
a
:
M
)
:
¬
✓
{
1
}
a
→
uPred_own
a
⊑
False
.
Proof
.
by
intros
;
rewrite
own_valid
valid_elim
.
Qed
.
Proof
.
by
intros
;
rewrite
own_valid
valid_elim
.
Qed
.
...
@@ -850,4 +852,45 @@ Proof.
...
@@ -850,4 +852,45 @@ Proof.
intro
;
apply
timelessP_spec
=>
x
[|
n
]
??
//
;
apply
cmra_included_includedN
,
intro
;
apply
timelessP_spec
=>
x
[|
n
]
??
//
;
apply
cmra_included_includedN
,
cmra_timeless_included_l
;
eauto
using
cmra_valid_le
.
cmra_timeless_included_l
;
eauto
using
cmra_valid_le
.
Qed
.
Qed
.
(* Always stable *)
Notation
AS
:=
AlwaysStable
.
Global
Instance
const_always_stable
φ
:
AS
(
■
φ
:
uPred
M
)
%
I
.
Proof
.
by
rewrite
/
AlwaysStable
always_const
.
Qed
.
Global
Instance
always_always_stable
P
:
AS
(
□
P
)
.
Proof
.
by
intros
;
apply
always_intro
.
Qed
.
Global
Instance
and_always_stable
P
Q
:
AS
P
→
AS
Q
→
AS
(
P
∧
Q
)
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_and
;
apply
and_mono
.
Qed
.
Global
Instance
or_always_stable
P
Q
:
AS
P
→
AS
Q
→
AS
(
P
∨
Q
)
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_or
;
apply
or_mono
.
Qed
.
Global
Instance
sep_always_stable
P
Q
:
AS
P
→
AS
Q
→
AS
(
P
★
Q
)
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_sep
;
apply
sep_mono
.
Qed
.
Global
Instance
forall_always_stable
{
A
}
(
P
:
A
→
uPred
M
)
:
(
∀
x
,
AS
(
P
x
))
→
AS
(
∀
x
,
P
x
)
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_forall
;
apply
forall_mono
.
Qed
.
Global
Instance
exist_always_stable
{
A
}
(
P
:
A
→
uPred
M
)
:
(
∀
x
,
AS
(
P
x
))
→
AS
(
∃
x
,
P
x
)
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_exist
;
apply
exist_mono
.
Qed
.
Global
Instance
eq_always_stable
{
A
:
cofeT
}
(
a
b
:
A
)
:
AS
(
a
≡
b
:
uPred
M
)
%
I
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_eq
.
Qed
.
Global
Instance
valid_always_stable
{
A
:
cmraT
}
(
a
:
A
)
:
AS
(
✓
a
:
uPred
M
)
%
I
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_valid
.
Qed
.
Global
Instance
later_always_stable
P
:
AS
P
→
AS
(
▷
P
)
.
Proof
.
by
intros
;
rewrite
/
AlwaysStable
always_later
;
apply
later_mono
.
Qed
.
Global
Instance
own_unit_always_stable
(
a
:
M
)
:
AS
(
uPred_own
(
unit
a
))
.
Proof
.
by
rewrite
/
AlwaysStable
always_own_unit
.
Qed
.
Global
Instance
default_always_stable
{
A
}
P
(
Q
:
A
→
uPred
M
)
(
mx
:
option
A
)
:
AS
P
→
(
∀
x
,
AS
(
Q
x
))
→
AS
(
default
P
mx
Q
)
.
Proof
.
destruct
mx
;
apply
_
.
Qed
.
Lemma
always_always
P
`{
!
AlwaysStable
P
}
:
(
□
P
)
%
I
≡
P
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_elim
.
Qed
.
Lemma
always_intro'
P
Q
`{
!
AlwaysStable
P
}
:
P
⊑
Q
→
P
⊑
□
Q
.
Proof
.
rewrite
-
(
always_always
P
);
apply
always_intro
.
Qed
.
Lemma
always_and_sep_l'
P
Q
`{
!
AlwaysStable
P
}
:
(
P
∧
Q
)
%
I
≡
(
P
★
Q
)
%
I
.
Proof
.
by
rewrite
-
(
always_always
P
)
always_and_sep_l
.
Qed
.
Lemma
always_and_sep_r'
P
Q
`{
!
AlwaysStable
Q
}
:
(
P
∧
Q
)
%
I
≡
(
P
★
Q
)
%
I
.
Proof
.
by
rewrite
-
(
always_always
Q
)
always_and_sep_r
.
Qed
.
Lemma
always_sep_dup'
P
`{
!
AlwaysStable
P
}
:
P
≡
(
P
★
P
)
%
I
.
Proof
.
by
rewrite
-
(
always_always
P
)
-
always_sep_dup
.
Qed
.
End
uPred_logic
.
End
uPred
.
End
uPred_logic
.
End
uPred
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment