Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
15201439
Commit
15201439
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
simplify the auth invariant
parent
21419737
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/auth.v
+7
-6
7 additions, 6 deletions
program_logic/auth.v
with
7 additions
and
6 deletions
program_logic/auth.v
+
7
−
6
View file @
15201439
...
...
@@ -24,7 +24,7 @@ Arguments auth_own {_ _ _ _ _} _ _.
Definition
auth_inv
`{
authG
Λ
Σ
A
}
(
γ
:
gname
)
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
(
∃
a
,
(
✓
a
∧
own
γ
(
●
a
)
)
★
φ
a
)
%
I
.
(
∃
a
,
own
γ
(
●
a
)
★
φ
a
)
%
I
.
Definition
auth_ctx
`{
authG
Λ
Σ
A
}
(
γ
:
gname
)
(
N
:
namespace
)
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
inv
N
(
auth_inv
γ
φ
)
.
...
...
@@ -64,7 +64,7 @@ Section auth.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
trans
(
▷
auth_inv
γ
φ
★
auth_own
γ
a
)
%
I
.
{
rewrite
/
auth_inv
-
(
exist_intro
a
)
later_sep
.
rewrite
-
valid_intro
//
left_id
.
ecancel
[
▷
φ
_]
%
I
.
ecancel
[
▷
φ
_]
%
I
.
by
rewrite
-
later_intro
auth_own_eq
-
own_op
auth_both_op
.
}
rewrite
(
inv_alloc
N
)
/
auth_ctx
pvs_frame_r
.
apply
pvs_mono
.
by
rewrite
always_and_sep_l
.
...
...
@@ -78,8 +78,8 @@ Section auth.
⊑
(|
=
{
E
}=>
∃
a'
,
✓
(
a
⋅
a'
)
★
▷
φ
(
a
⋅
a'
)
★
own
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
Proof
.
rewrite
/
auth_inv
.
rewrite
later_exist
sep_exist_r
.
apply
exist_elim
=>
b
.
rewrite
later_sep
[(
▷
(_
∧
_)
)
%
I
]
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
always_and_sep_l
-!
assoc
discrete_valid
.
apply
const_elim_sep_l
=>
Hv
.
rewrite
later_sep
[(
▷
own
_
_
)
%
I
]
pvs_timeless
!
pvs_frame_r
.
apply
pvs_mono
.
rewrite
own_valid_l
discrete_valid
-!
assoc
.
apply
const_elim_sep_l
=>
Hv
.
rewrite
auth_own_eq
[(
▷
φ
_
★
_)
%
I
]
comm
assoc
-
own_op
.
rewrite
own_valid_r
auth_validI
/=
and_elim_l
sep_exist_l
sep_exist_r
/=.
apply
exist_elim
=>
a'
.
...
...
@@ -87,7 +87,8 @@ Section auth.
apply
(
eq_rewrite
b
(
a
⋅
a'
)
(
λ
x
,
✓
x
★
▷
φ
x
★
own
γ
(
●
x
⋅
◯
a
))
%
I
)
.
{
by
move
=>
n
x
y
/
timeless_iff
->
.
}
{
by
eauto
with
I
.
}
rewrite
-
valid_intro
//
left_id
comm
.
auto
with
I
.
rewrite
-
valid_intro
;
last
by
apply
Hv
.
rewrite
left_id
comm
.
auto
with
I
.
Qed
.
Lemma
auth_closing
`{
!
LocalUpdate
Lv
L
}
E
γ
a
a'
:
...
...
@@ -99,7 +100,7 @@ Section auth.
(* TODO it would be really nice to use cancel here *)
rewrite
later_sep
[(_
★
▷
φ
_)
%
I
]
comm
-
assoc
.
rewrite
-
pvs_frame_l
.
apply
sep_mono_r
.
rewrite
-
valid_intro
//
left_id
-
later_intro
-
own_op
.
rewrite
-
later_intro
-
own_op
.
by
apply
own_update
,
(
auth_local_update_l
L
)
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment