Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tej Chajed
iris
Commits
0e6d307c
Commit
0e6d307c
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
make it possible to embed general Coq operations; test that this works
parent
8d840a4b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
channel/heap_lang.v
+82
-44
82 additions, 44 deletions
channel/heap_lang.v
with
82 additions
and
44 deletions
channel/heap_lang.v
+
82
−
44
View file @
0e6d307c
...
...
@@ -4,11 +4,32 @@ Require Import prelude.option.
Set
Bullet
Behavior
"Strict Subproofs"
.
(** Some tactics useful when dealing with equality of sigma-like types: existT T0 t0 = existT T1 t1.
They all assume such an equality is the first thing on the "stack" (goal). *)
Ltac
case_depeq1
:=
let
Heq
:=
fresh
"Heq"
in
case
=>_
/
EqdepFacts
.
eq_sigT_sig_eq
=>
Heq
;
destruct
Heq
as
(
->
,
<-
)
.
Ltac
case_depeq2
:=
let
Heq
:=
fresh
"Heq"
in
case
=>_
_
/
EqdepFacts
.
eq_sigT_sig_eq
=>
Heq
;
destruct
Heq
as
(
->
,
Heq
);
case
:
Heq
=>_
/
EqdepFacts
.
eq_sigT_sig_eq
=>
Heq
;
destruct
Heq
as
(
->
,
<-
)
.
Ltac
case_depeq3
:=
let
Heq
:=
fresh
"Heq"
in
case
=>_
_
_
/
EqdepFacts
.
eq_sigT_sig_eq
=>
Heq
;
destruct
Heq
as
(
->
,
Heq
);
case
:
Heq
=>_
_
/
EqdepFacts
.
eq_sigT_sig_eq
=>
Heq
;
destruct
Heq
as
(
->
,
Heq
);
case
:
Heq
=>_
/
EqdepFacts
.
eq_sigT_sig_eq
=>
Heq
;
destruct
Heq
as
(
->
,
<-
)
.
(** Expressions and values. *)
Inductive
expr
:=
|
Var
(
x
:
var
)
|
Lit
(
T
:
Type
)
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
App
(
e1
e2
:
expr
)
|
Lam
(
e
:
{
bind
expr
})
|
App
(
e1
e2
:
expr
)
|
Lit
{
T
:
Type
}
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
Op1
{
T1
To
:
Type
}
(
f
:
T1
->
To
)
(
e1
:
expr
)
|
Op2
{
T1
T2
To
:
Type
}
(
f
:
T1
->
T2
->
To
)
(
e1
:
expr
)
(
e2
:
expr
)
|
Pair
(
e1
e2
:
expr
)
|
Fst
(
e
:
expr
)
|
Snd
(
e
:
expr
)
...
...
@@ -16,21 +37,23 @@ Inductive expr :=
|
InjR
(
e
:
expr
)
|
Case
(
e0
:
expr
)
(
e1
:
{
bind
expr
})
(
e2
:
{
bind
expr
})
.
Definition
state
:=
unit
.
Instance
Ids_expr
:
Ids
expr
.
derive
.
Defined
.
Instance
Rename_expr
:
Rename
expr
.
derive
.
Defined
.
Instance
Subst_expr
:
Subst
expr
.
derive
.
Defined
.
Instance
SubstLemmas_expr
:
SubstLemmas
expr
.
derive
.
Qed
.
Inductive
value
:=
|
LitV
(
T
:
Type
)
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
LamV
(
e
:
{
bind
expr
})
|
LitV
(
T
:
Type
)
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
PairV
(
v1
v2
:
value
)
|
InjLV
(
v
:
value
)
|
InjRV
(
v
:
value
)
.
Fixpoint
v2e
(
v
:
value
)
:
expr
:=
match
v
with
|
LitV
T
t
=>
Lit
T
t
|
LitV
_
t
=>
Lit
t
|
LamV
e
=>
Lam
e
|
PairV
v1
v2
=>
Pair
(
v2e
v1
)
(
v2e
v2
)
|
InjLV
v
=>
InjL
(
v2e
v
)
...
...
@@ -40,9 +63,11 @@ Fixpoint v2e (v : value) : expr :=
Fixpoint
e2v
(
e
:
expr
)
:
option
value
:=
match
e
with
|
Var
_
=>
None
|
Lit
T
t
=>
Some
(
LitV
T
t
)
|
App
_
_
=>
None
|
Lam
e
=>
Some
(
LamV
e
)
|
App
_
_
=>
None
|
Lit
T
t
=>
Some
(
LitV
T
t
)
|
Op1
_
_
_
_
=>
None
|
Op2
_
_
_
_
_
_
=>
None
|
Pair
e1
e2
=>
v1
←
e2v
e1
;
v2
←
e2v
e2
;
Some
(
PairV
v1
v2
)
...
...
@@ -74,28 +99,21 @@ Proof.
Qed
.
End
e2e
.
Definition
eq_transport
(
T1
T2
:
Type
)
(
Heq
:
T1
=
T2
):
T1
->
T2
.
(* RJ: I am *sure* this is already defined somewhere... *)
intros
t1
.
rewrite
-
Heq
.
exact
t1
.
Defined
.
Lemma
eq_transport_id
T
(
t
:
T
)
:
t
=
eq_transport
T
T
eq_refl
t
.
Proof
.
reflexivity
.
Qed
.
Lemma
v2e_inj
v1
v2
:
v2e
v1
=
v2e
v2
->
v1
=
v2
.
Proof
.
revert
v2
;
induction
v1
=>
v2
;
destruct
v2
;
simpl
;
try
discriminate
;
case
;
eauto
using
f_equal
,
f_equal2
.
-
intros
_
.
move
/
EqdepFacts
.
eq_sigT_sig_eq
=>
H
.
destruct
H
as
(
->
,
<-
)
.
reflexivity
.
revert
v2
;
induction
v1
=>
v2
;
destruct
v2
;
simpl
;
try
discriminate
;
first
[
case_depeq3
|
case_depeq2
|
case_depeq1
|
case
];
eauto
using
f_equal
,
f_equal2
.
Qed
.
(** Evaluation contexts *)
Inductive
ectx
:=
|
EmptyCtx
|
AppLCtx
(
K1
:
ectx
)
(
e2
:
expr
)
|
AppRCtx
(
v1
:
value
)
(
K2
:
ectx
)
|
Op1Ctx
{
T1
To
:
Type
}
(
f
:
T1
->
To
)
(
K
:
ectx
)
|
Op2LCtx
{
T1
T2
To
:
Type
}
(
f
:
T1
->
T2
->
To
)
(
K1
:
ectx
)
(
e2
:
expr
)
|
Op2RCtx
{
T1
T2
To
:
Type
}
(
f
:
T1
->
T2
->
To
)
(
v1
:
value
)
(
K2
:
ectx
)
|
PairLCtx
(
K1
:
ectx
)
(
e2
:
expr
)
|
PairRCtx
(
v1
:
value
)
(
K2
:
ectx
)
|
FstCtx
(
K
:
ectx
)
...
...
@@ -109,6 +127,9 @@ Fixpoint fill (K : ectx) (e : expr) :=
|
EmptyCtx
=>
e
|
AppLCtx
K1
e2
=>
App
(
fill
K1
e
)
e2
|
AppRCtx
v1
K2
=>
App
(
v2e
v1
)
(
fill
K2
e
)
|
Op1Ctx
_
_
f
K
=>
Op1
f
(
fill
K
e
)
|
Op2LCtx
_
_
_
f
K1
e2
=>
Op2
f
(
fill
K1
e
)
e2
|
Op2RCtx
_
_
_
f
v1
K2
=>
Op2
f
(
v2e
v1
)
(
fill
K2
e
)
|
PairLCtx
K1
e2
=>
Pair
(
fill
K1
e
)
e2
|
PairRCtx
v1
K2
=>
Pair
(
v2e
v1
)
(
fill
K2
e
)
|
FstCtx
K
=>
Fst
(
fill
K
e
)
...
...
@@ -123,6 +144,9 @@ Fixpoint comp_ctx (Ko : ectx) (Ki : ectx) :=
|
EmptyCtx
=>
Ki
|
AppLCtx
K1
e2
=>
AppLCtx
(
comp_ctx
K1
Ki
)
e2
|
AppRCtx
v1
K2
=>
AppRCtx
v1
(
comp_ctx
K2
Ki
)
|
Op1Ctx
_
_
f
K
=>
Op1Ctx
f
(
comp_ctx
K
Ki
)
|
Op2LCtx
_
_
_
f
K1
e2
=>
Op2LCtx
f
(
comp_ctx
K1
Ki
)
e2
|
Op2RCtx
_
_
_
f
v1
K2
=>
Op2RCtx
f
v1
(
comp_ctx
K2
Ki
)
|
PairLCtx
K1
e2
=>
PairLCtx
(
comp_ctx
K1
Ki
)
e2
|
PairRCtx
v1
K2
=>
PairRCtx
v1
(
comp_ctx
K2
Ki
)
|
FstCtx
K
=>
FstCtx
(
comp_ctx
K
Ki
)
...
...
@@ -158,11 +182,32 @@ Proof.
try
destruct
(
e2v
(
fill
K
e
));
rewrite
?v2v
;
eauto
.
Qed
.
Definition
state
:=
unit
.
Lemma
fill_not_value
e
K
:
e2v
e
=
None
->
e2v
(
fill
K
e
)
=
None
.
Proof
.
intros
Hnval
.
induction
K
=>
/=
;
try
reflexivity
.
-
done
.
-
by
rewrite
IHK
/=.
-
by
rewrite
v2v
/=
IHK
/=.
-
by
rewrite
IHK
/=.
-
by
rewrite
IHK
/=.
Qed
.
Lemma
fill_not_value2
e
K
v
:
e2v
e
=
None
->
e2v
(
fill
K
e
)
=
Some
v
->
False
.
Proof
.
intros
Hnval
Hval
.
erewrite
fill_not_value
in
Hval
by
assumption
.
discriminate
.
Qed
.
(** The stepping relation *)
Inductive
prim_step
:
expr
->
state
->
expr
->
state
->
option
expr
->
Prop
:=
|
Beta
e1
e2
v2
σ
(
Hv2
:
e2v
e2
=
Some
v2
):
prim_step
(
App
(
Lam
e1
)
e2
)
σ
(
e1
.[
e2
/
])
σ
None
|
Op1S
T1
To
(
f
:
T1
->
To
)
t
σ
:
prim_step
(
Op1
f
(
Lit
t
))
σ
(
Lit
(
f
t
))
σ
None
|
Op2S
T1
T2
To
(
f
:
T1
->
T2
->
To
)
t1
t2
σ
:
prim_step
(
Op2
f
(
Lit
t1
)
(
Lit
t2
))
σ
(
Lit
(
f
t1
t2
))
σ
None
|
FstS
e1
v1
e2
v2
σ
(
Hv1
:
e2v
e1
=
Some
v1
)
(
Hv2
:
e2v
e2
=
Some
v2
):
prim_step
(
Fst
(
Pair
e1
e2
))
σ
e1
σ
None
|
SndS
e1
v1
e2
v2
σ
(
Hv1
:
e2v
e1
=
Some
v1
)
(
Hv2
:
e2v
e2
=
Some
v2
):
...
...
@@ -190,23 +235,6 @@ Proof.
Qed
.
Lemma
fill_not_value
e
K
:
e2v
e
=
None
->
e2v
(
fill
K
e
)
=
None
.
Proof
.
intros
Hnval
.
induction
K
=>
/=
;
try
reflexivity
.
-
done
.
-
by
rewrite
IHK
/=.
-
by
rewrite
v2v
/=
IHK
/=.
-
by
rewrite
IHK
/=.
-
by
rewrite
IHK
/=.
Qed
.
Lemma
fill_not_value2
e
K
v
:
e2v
e
=
None
->
e2v
(
fill
K
e
)
=
Some
v
->
False
.
Proof
.
intros
Hnval
Hval
.
erewrite
fill_not_value
in
Hval
by
assumption
.
discriminate
.
Qed
.
Section
step_by_value
.
(* When something does a step, and another decomposition of the same
expression has a non-value e in the hole, then K is a left
...
...
@@ -218,9 +246,10 @@ Lemma step_by_value K K' e e' :
e2v
e
=
None
->
exists
K''
,
K'
=
comp_ctx
K
K''
.
Proof
.
Ltac
bad_fill1
Hfill
:=
exfalso
;
case
:
Hfill
=>
Hfill
;
intros
;
subst
;
eapply
fill_not_value2
;
first
eassumption
;
by
erewrite
Hfill
,
?v2v
.
Ltac
bad_fill2
Hfill
:=
exfalso
;
case
:
Hfill
=>
Hfill
;
intros
;
subst
;
eapply
values_stuck
;
eassumption
.
Ltac
bad_fill
Hfill
:=
exfalso
;
move
:
Hfill
;
first
[
case_depeq3
|
case_depeq2
|
case_depeq1
|
case
]
=>
Hfill
;
intros
;
subst
;
(
eapply
values_stuck
;
eassumption
)
||
(
eapply
fill_not_value2
;
first
eassumption
;
by
erewrite
?Hfill
,
?v2v
)
.
Ltac
bad_red
Hfill
e'
Hred
:=
exfalso
;
destruct
e'
;
try
discriminate
;
[];
case
:
Hfill
;
intros
;
subst
;
destruct
Hred
as
(
σ'
&
e''
&
σ''
&
ef
&
Hstep
);
inversion
Hstep
;
done
||
(
clear
Hstep
;
subst
;
...
...
@@ -228,19 +257,28 @@ Proof.
try
match
goal
with
[
H
:
_
=
fill
_
_
|
-
_
]
=>
erewrite
<-
H
end
;
simpl
;
repeat
match
goal
with
[
H
:
e2v
_
=
_
|
-
_
]
=>
erewrite
H
;
simpl
end
);
eassumption
||
done
)
.
Ltac
good
Hfill
IH
:=
cas
e
:
Hfill
=>
Hfill
;
intros
;
subst
;
Ltac
good
Hfill
IH
:=
mov
e
:
Hfill
;
first
[
case_depeq3
|
case_depeq2
|
case_depeq1
|
case
]
;
intros
;
subst
;
let
K''
:=
fresh
"K''"
in
edestruct
IH
as
[
K''
Hcomp
];
first
eassumption
;
exists
K''
;
by
eauto
using
f_equal
,
f_equal2
,
f_equal3
,
v2e_inj
.
intros
Hfill
Hred
Hnval
.
revert
K'
Hfill
;
induction
K
=>
K'
/=
Hfill
;
try
first
[
Time
revert
K'
Hfill
;
induction
K
=>
K'
/=
Hfill
;
try
first
[
now
eexists
;
reflexivity
|
destruct
K'
;
simpl
;
try
discriminate
;
try
first
[
bad_red
Hfill
e'
Hred
|
bad_fill1
Hfill
|
bad_fill2
Hfill
|
bad_fill
Hfill
|
good
Hfill
IHK
]
]
.
Qed
.
End
step_by_value
.
Module
Tests
.
Definition
lit
:=
Lit
21
.
Definition
term
:=
Op2
plus
lit
lit
.
Goal
forall
σ
,
prim_step
term
σ
(
Lit
42
)
σ
None
.
Proof
.
apply
Op2S
.
Qed
.
End
Tests
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment