Forked from
Iris / Iris
6989 commits behind the upstream repository.
-
Robbert Krebbers authoredRobbert Krebbers authored
model.v 3.06 KiB
From algebra Require Export upred.
From program_logic Require Export resources.
From algebra Require Import cofe_solver.
(* The Iris program logic is parametrized by a functor from the category of
COFEs to the category of CMRAs, which is instantiated with [laterC iProp]. The
[laterC iProp] can be used to construct impredicate CMRAs, such as the stored
propositions using the agreement CMRA. *)
Module Type iProp_solution_sig.
Parameter iPreProp : language → rFunctor → cofeT.
Definition iGst (Λ : language) (Σ : rFunctor) : cmraT :=
Σ (laterC (iPreProp Λ Σ)).
Definition iRes Λ Σ := res Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iResR Λ Σ := resR Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iWld Λ Σ := gmap positive (agree (laterC (iPreProp Λ Σ))).
Definition iPst Λ := excl (state Λ).
Definition iProp (Λ : language) (Σ : rFunctor) : cofeT := uPredC (iResR Λ Σ).
Parameter iProp_unfold: ∀ {Λ Σ}, iProp Λ Σ -n> iPreProp Λ Σ.
Parameter iProp_fold: ∀ {Λ Σ}, iPreProp Λ Σ -n> iProp Λ Σ.
Parameter iProp_fold_unfold: ∀ {Λ Σ} (P : iProp Λ Σ),
iProp_fold (iProp_unfold P) ≡ P.
Parameter iProp_unfold_fold: ∀ {Λ Σ} (P : iPreProp Λ Σ),
iProp_unfold (iProp_fold P) ≡ P.
End iProp_solution_sig.
Module Export iProp_solution : iProp_solution_sig.
Definition iProp_result (Λ : language) (Σ : rFunctor) :
solution (uPredCF (resRF Λ laterCF (laterRF Σ))).
Proof.
(* Contractiveness should be derived from general properties about functors *)
apply (solver.result _)=> A1 A2 B1 B2.
intros n fg fg' Hf P; split=> n' -[???].
apply uPredC_map_ne, resC_map_ne; simpl.
- apply laterC_map_contractive=> i ?. by apply Hf.
- apply rFunctor_ne; split; apply laterC_map_contractive=> i ?; by apply Hf.
Qed.
Definition iPreProp (Λ : language) (Σ : rFunctor) : cofeT := iProp_result Λ Σ.
Definition iGst (Λ : language) (Σ : rFunctor) : cmraT :=
Σ (laterC (iPreProp Λ Σ)).
Definition iRes Λ Σ := res Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iResR Λ Σ := resR Λ (laterC (iPreProp Λ Σ)) (iGst Λ Σ).
Definition iWld Λ Σ := gmap positive (agree (laterC (iPreProp Λ Σ))).
Definition iPst Λ := excl (state Λ).
Definition iProp (Λ : language) (Σ : rFunctor) : cofeT := uPredC (iResR Λ Σ).
Definition iProp_unfold {Λ Σ} : iProp Λ Σ -n> iPreProp Λ Σ :=
solution_fold (iProp_result Λ Σ).
Definition iProp_fold {Λ Σ} : iPreProp Λ Σ -n> iProp Λ Σ := solution_unfold _.
Lemma iProp_fold_unfold {Λ Σ} (P : iProp Λ Σ) : iProp_fold (iProp_unfold P) ≡ P.
Proof. apply solution_unfold_fold. Qed.
Lemma iProp_unfold_fold {Λ Σ} (P : iPreProp Λ Σ) :
iProp_unfold (iProp_fold P) ≡ P.
Proof. apply solution_fold_unfold. Qed.
End iProp_solution.
Bind Scope uPred_scope with iProp.
Instance iProp_fold_inj n Λ Σ : Inj (dist n) (dist n) (@iProp_fold Λ Σ).
Proof. by intros X Y H; rewrite -(iProp_unfold_fold X) H iProp_unfold_fold. Qed.
Instance iProp_unfold_inj n Λ Σ :
Inj (dist n) (dist n) (@iProp_unfold Λ Σ).
Proof. by intros X Y H; rewrite -(iProp_fold_unfold X) H iProp_fold_unfold. Qed.